Explore the CAZome of Pectobacteriaceae genomes¶

This notebook explores the size and composition of 717 Genbank Pectobacteriaceae CAZomes.

GitHub¶

Information of the complete method for this analysis, including augmenting the dataset, a README-walkthrough, and the output figure files, can be found in the GitHub repository.

Table of Contents¶

  1. Imports
    • Load packages
    • Load in data
  2. CAZome size
    • Compare the number of CAZymes
    • Compare the proportion of the proteome represented by the CAZomes
  3. CAZy classes
    • The number of CAZymes per CAZy class
    • Mean (+/- SD) number of CAZymes per CAZy class per genus
  4. CAZy families
    • Calculate CAZy family frequencies per genome
    • Plot a clustermap of CAZy family frequencies
  5. Core CAZome
    • Identify families that are present in all genomes
    • Calculate the frequency of families in the core CAZome
    • Pectobacterium core CAZome
    • Dickeya
  6. Always co-occurring families
    • Identify CAZy families that are always present in the genome together
    • Explore across all Pectobacterium and Dickeya genomes, and per genus
    • Build an upset plot of co-occurring CAZy families
    • Compile a matrix with the indcidence data for each group of co-occurring CAZy families
  7. Principal Component Analysis (PCA)
    • Explore the association between the host range, global distribution and composition of the CAZome
    • Explore across all Pectobacterium and Dickeya genomes, and per genus

0. Imports¶

Packages¶

In [1]:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
import seaborn as sns
import statistics
import re
import time

from copy import copy
from matplotlib.patches import Patch
from pathlib import Path

import adjustText
import statsmodels.api as sm
import upsetplot

from Bio import SeqIO
from saintBioutils.utilities.file_io.get_paths import get_file_paths
from saintBioutils.utilities.file_io import make_output_directory
from scipy.stats import ttest_ind, f_oneway
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from statsmodels.formula.api import ols
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from tqdm.notebook import tqdm

%matplotlib inline
In [2]:
# loading and parsing data
from cazomevolve.cazome.explore.parse_data import (
    load_fgp_data,
    load_tax_data,
    add_tax_data_from_tax_df,
    add_tax_column_from_row_index,
)

# functions for exploring the sizes of CAZomes
from cazomevolve.cazome.explore.cazome_sizes import (
    calc_proteome_representation,
    count_items_in_cazome,
    get_proteome_sizes,
    count_cazyme_fam_ratio,
)

# explore the frequency of CAZymes per CAZy class
from cazomevolve.cazome.explore.cazy_classes import calculate_class_sizes

# explore the frequencies of CAZy families and identify the co-cazome
from cazomevolve.cazome.explore.cazy_families import (
    build_fam_freq_df,
    build_row_colours,
    build_family_clustermap,
    identify_core_cazome,
    plot_fam_boxplot,
    build_fam_mean_freq_df,
    get_group_specific_fams,
    build_family_clustermap_multi_legend,
)

# functions to identify and explore CAZy families that are always present together
from cazomevolve.cazome.explore.cooccurring_families import (
    identify_cooccurring_fams_corrM,
    calc_cooccuring_fam_freqs,
    identify_cooccurring_fam_pairs,
    add_to_upsetplot_membership,
    build_upsetplot,
    get_upsetplot_grps,
    add_upsetplot_grp_freqs,
    build_upsetplot_matrix,
)

# functions to perform PCA
from cazomevolve.cazome.explore.pca import (
    perform_pca,
    plot_explained_variance,
    plot_scree,
    plot_pca,
    plot_loadings,
)

Output directory¶

To make the parent output directory, and further down to make output subdirectories, use the function make_output_directory from the saintBioutils package.

One positional argument is required: the path to the target output directory to be build - this must be a Path object.

The path for the output directory must be provided as a **Path** object from the `pathlib` package.
Setting force and nodelete to True will ensure the output directory is created, and if it exists, content in the output directory is not deleted.
In [3]:
# make output dir for results, will not delete data if dir already exists
make_output_directory(Path('../results'), force=True, nodelete=True)
Output directory ../results exists, nodelete is True. Adding output to output directory.

Import Data¶

CAZy family annotations¶

To import CAZy family annotations, load the tab delimited file listing cazy families, genomes and protein accessions, by providing the path to the 'gfp file' to load_gfp_data() function from cazomevolve.

Note: Each unique protein-family pair is represented on a separate line. A protein can contain multiple CAZyme domains and thus can be annotated with multiple CAZy families. Therefore, a single protein can be present on multiple rows in the dataframe called gfp_df.
In [4]:
fgp_file = "../data/cazomes/pecto_fam_genomes_proteins"
fgp_df = load_fgp_data(fgp_file)
fgp_df.head(3)
Out[4]:
Family Genome Protein
0 CBM50 GCA_003382565.3 UEM40323.1
1 GT35 GCA_003382565.3 UEM39157.1
2 GH5 GCA_003382565.3 UEM41238.1
In [5]:
print(f"Total CAZymes (i.e. the number of unique protein IDs): {len(set(fgp_df['Protein']))}")
Total CAZymes (i.e. the number of unique protein IDs): 78132

Taxonomy data¶

Load in CSV containing taxonomic information, that was generated using the cazomevolve subcommand add_taxs, by providing a path to the file to load_tax_data() function from cazomevovle, and specify which taxonomic ranks (kingdom, phylum, etc.) are listed in the CSV file.

In this case, genus and species inforamtion was retrieved from the NCBI database and are stored in the CSV file.

Note: The CSV file created using the cazomevolve subcommand "add_taxs" will contain a column called 'Genome', listing genomic accessions, and one column per taxonomic rank retrieved from NCBI and/or GTDB.
In [6]:
tax_csv_path = "../data/cazomes/fg_genome_taxs.csv"
tax_df = load_tax_data(tax_csv_path, genus=True, species=True)
tax_df.head(3)
Out[6]:
Genome Genus Species
0 GCA_922021645.1 Pectobacterium versatile
1 GCA_004296685.1 Pectobacterium versatile
2 GCA_018094705.1 Pectobacterium versatile

Compile all data into a single dataframe¶

Build dataframe of:

  • CAZy family annotations
  • Genomic accession
  • Taxonomic information - splitting each taxonomy rank (i.e. ranks) into a separate column. E.g.:
    • Genus
    • Species
In [7]:
fgp_df = add_tax_data_from_tax_df(
    fgp_df,
    tax_df,
    genus=True,
    species=True,
)
fgp_df.head(3)
Collecting Genus data: 100%|████████████████████████████████████████████████████████████████| 83143/83143 [00:40<00:00, 2073.90it/s]
Collecting Species data: 100%|██████████████████████████████████████████████████████████████| 83143/83143 [00:40<00:00, 2033.06it/s]
Out[7]:
Family Genome Protein Genus Species
0 CBM50 GCA_003382565.3 UEM40323.1 Pectobacterium aquaticum
1 GT35 GCA_003382565.3 UEM39157.1 Pectobacterium aquaticum
2 GH5 GCA_003382565.3 UEM41238.1 Pectobacterium aquaticum
In [8]:
print(f"Total CAZymes: {len(set(fgp_df['Protein']))}")
Total CAZymes: 78132

1. CAZome size¶

Explore and compare the sizes of the CAZomes, by calculating:

  • The number of CAZymes per genome
  • The mean number of CAZymes per genome per genus
  • The proportion of the proteome represented by the CAZome
  • The mean proportion of the proteome represented by the CAZome
Note: The number of CAZymes is defined as the unique number of protein IDs.

Use the count_items_in_cazome() function to retrieve the number of CAZymes and the number of CAZy families per genome, and the mean (and standard deviation (SD)) counts per genus.

In [9]:
# check all genomes are represented in the fgp_df
f"Examining {len(set(fgp_df['Genome']))} genomes"
Out[9]:
'Examining 717 genomes'
In [10]:
print(f"Examining {len(set(fgp_df['Genus']))} genera:")
for genus in set(fgp_df['Genus']):
    print(f'- {genus}')
Examining 8 genera:
- Lonsdalea
- Samsonia
- Pectobacterium
- Musicola
- Brenneria
- Affinibrenneria
- Dickeya
- Acerihabitans

Count the number of CAZymes¶

In [11]:
# Calculate CAZymes per genome
cazome_sizes_dict, cazome_sizes_df = count_items_in_cazome(fgp_df, 'Protein', 'Genus', round_by=2)
cazome_sizes_df
Gathering CAZy families per genome: 100%|██████████████████████████████████████████████████| 83143/83143 [00:05<00:00, 15652.38it/s]
Calculating num of Protein per genome and per Genus: 100%|██████████████████████████████████████████| 8/8 [00:00<00:00, 3528.70it/s]
Out[11]:
Genus MeanProteins SdProteins NumOfGenomes
0 Pectobacterium 112.65 8.02 432
1 Dickeya 111.16 6.60 206
2 Musicola 92.25 2.28 4
3 Brenneria 87.79 7.46 33
4 Lonsdalea 77.15 4.70 39
5 Acerihabitans 106.00 0.00 1
6 Affinibrenneria 108.00 0.00 1
7 Samsonia 81.00 0.00 1
In [12]:
# calculate mean across pectobacteriaceae
pectobact_cazome_sizes = []
for genus in cazome_sizes_dict:
    for genome in cazome_sizes_dict[genus]:
        pectobact_cazome_sizes.append(cazome_sizes_dict[genus][genome]['numOfProteins'])

pd.concat(
    [
        cazome_sizes_df, 
        pd.DataFrame(
            [[
                'Pectobacteriaceae',
                np.mean(pectobact_cazome_sizes),
                np.std(pectobact_cazome_sizes),
                len(set(fgp_df['Genome'])),
            ]], 
            columns=cazome_sizes_df.columns
        ),
    ],
    axis=0,
)
Out[12]:
Genus MeanProteins SdProteins NumOfGenomes
0 Pectobacterium 112.650000 8.020000 432
1 Dickeya 111.160000 6.600000 206
2 Musicola 92.250000 2.280000 4
3 Brenneria 87.790000 7.460000 33
4 Lonsdalea 77.150000 4.700000 39
5 Acerihabitans 106.000000 0.000000 1
6 Affinibrenneria 108.000000 0.000000 1
7 Samsonia 81.000000 0.000000 1
0 Pectobacteriaceae 108.970711 11.958225 717

Identify the total number of CAZymes¶

In [13]:
print(f"The total number of CAZymes is {len(set(fgp_df['Protein']))}")

for genus in set(fgp_df['Genus']):
    genus_df = fgp_df[fgp_df['Genus'] == genus]
    print(f"The total number of {genus} CAZymes is {len(set(genus_df['Protein']))}")
The total number of CAZymes is 78132
The total number of Lonsdalea CAZymes is 3009
The total number of Samsonia CAZymes is 81
The total number of Pectobacterium CAZymes is 48663
The total number of Musicola CAZymes is 369
The total number of Brenneria CAZymes is 2897
The total number of Affinibrenneria CAZymes is 108
The total number of Dickeya CAZymes is 22899
The total number of Acerihabitans CAZymes is 106

Count the number of CAZy families¶

In [14]:
# Calculate CAZy families per genome
cazome_fam_dict, cazome_fams_df = count_items_in_cazome(fgp_df, 'Family', 'Genus', round_by=2)
cazome_fams_df
Gathering CAZy families per genome: 100%|██████████████████████████████████████████████████| 83143/83143 [00:05<00:00, 15878.20it/s]
Calculating num of Family per genome and per Genus: 100%|███████████████████████████████████████████| 8/8 [00:00<00:00, 3446.43it/s]
Out[14]:
Genus MeanFamilys SdFamilys NumOfGenomes
0 Pectobacterium 62.08 3.46 432
1 Dickeya 59.05 3.04 206
2 Musicola 50.25 0.43 4
3 Brenneria 53.67 3.71 33
4 Lonsdalea 42.62 2.14 39
5 Acerihabitans 48.00 0.00 1
6 Affinibrenneria 48.00 0.00 1
7 Samsonia 49.00 0.00 1
In [15]:
# calculate mean across pectobacteriaceae
pectobact_fam_nums = []
for genus in cazome_fam_dict:
    for genome in cazome_fam_dict[genus]:
        pectobact_fam_nums.append(cazome_fam_dict[genus][genome]['numOfFamilys'])

pd.concat(
    [
        cazome_fams_df, 
        pd.DataFrame(
            [[
                'Pectobacteriaceae',
                np.mean(pectobact_fam_nums),
                np.std(pectobact_fam_nums),
                len(set(fgp_df['Genome'])),
            ]], 
            columns=cazome_fams_df.columns
        ),
    ],
    axis=0,
)
Out[15]:
Genus MeanFamilys SdFamilys NumOfGenomes
0 Pectobacterium 62.080000 3.460000 432
1 Dickeya 59.050000 3.040000 206
2 Musicola 50.250000 0.430000 4
3 Brenneria 53.670000 3.710000 33
4 Lonsdalea 42.620000 2.140000 39
5 Acerihabitans 48.000000 0.000000 1
6 Affinibrenneria 48.000000 0.000000 1
7 Samsonia 49.000000 0.000000 1
0 Pectobacteriaceae 59.638773 5.733681 717

Calculate ratio of CAZymes to CAZy families¶

The CAZyme to CAZy families ratio can be used to determine whether a genus typically contains few or many CAZymes per CAZy family.

In [16]:
cazome_ratio_dict, cazome_ratio_df = count_cazyme_fam_ratio(fgp_df, 'Genus', round_by=2)
cazome_ratio_df
Gathering CAZymes and CAZy families per genome: 100%|██████████████████████████████████████| 83143/83143 [00:05<00:00, 15141.59it/s]
Calculating CAZyme/CAZy family ratio: 100%|█████████████████████████████████████████████████████████| 8/8 [00:00<00:00, 3781.63it/s]
Out[16]:
Genus MeanCAZymeToFamRatio SdCAZymeToFamRatio NumOfGenomes
0 Pectobacterium 1.81 0.09 432
1 Dickeya 1.88 0.07 206
2 Musicola 1.84 0.04 4
3 Brenneria 1.64 0.07 33
4 Lonsdalea 1.81 0.07 39
5 Acerihabitans 2.21 0.00 1
6 Affinibrenneria 2.25 0.00 1
7 Samsonia 1.65 0.00 1
In [17]:
pecto_ratios = []
for genus in cazome_sizes_dict:
    for genome in cazome_sizes_dict[genus]:
        ratio = (
            cazome_sizes_dict[genus][genome]['numOfProteins'] / cazome_fam_dict[genus][genome]['numOfFamilys']
        )
        pecto_ratios.append(ratio)

pd.concat(
    [
        cazome_ratio_df,
        pd.DataFrame(
            [[
                'Pectobacteriaceae',
                np.mean(pecto_ratios),
                np.std(pecto_ratios),
                len(set(fgp_df['Genome'])),
            ]],
            columns=cazome_ratio_df.columns
        )
    ],
    axis=0,
)
Out[17]:
Genus MeanCAZymeToFamRatio SdCAZymeToFamRatio NumOfGenomes
0 Pectobacterium 1.810000 0.09000 432
1 Dickeya 1.880000 0.07000 206
2 Musicola 1.840000 0.04000 4
3 Brenneria 1.640000 0.07000 33
4 Lonsdalea 1.810000 0.07000 39
5 Acerihabitans 2.210000 0.00000 1
6 Affinibrenneria 2.250000 0.00000 1
7 Samsonia 1.650000 0.00000 1
0 Pectobacteriaceae 1.826642 0.09796 717

Calculate proteome sizes¶

Calculate the number of unique protein IDs, total, in each genome - i.e. not just CAZymes but all proteins.

In [18]:
# Get the size of the proteome (the number of protein acc) per genome
grp = 'Genus'
proteome_dir = "../data/proteomes"
proteome_dict = get_proteome_sizes(proteome_dir, fgp_df, grp)
Getting proteome sizes: 100%|█████████████████████████████████████████████████████████████████████| 717/717 [00:38<00:00, 18.52it/s]
In [19]:
# get total number of proteins across all proteomes
total_proteins = 0
for genus in proteome_dict:
    for genome in proteome_dict[genus]:
        total_proteins += proteome_dict[genus][genome]['numOfProteins']
print(f"Total number of proteins across all genomes: {total_proteins}")
Total number of proteins across all genomes: 2994018

Calculate the percentage of the proteome represented by the CAZome¶

Calculate the percentage of the proteome that is made up of the CAZome.

In [20]:
# Calculate the mean proteome size by genus and the proportion of the proteome represented by the CAZome
proteome_perc_df = calc_proteome_representation(proteome_dict, cazome_sizes_dict, grp, round_by=2)
proteome_perc_df
Getting proteome size: 100%|███████████████████████████████████████████████████████████████████████| 8/8 [00:00<00:00, 12069.94it/s]
Calc proteome perc: 100%|███████████████████████████████████████████████████████████████████████████| 8/8 [00:00<00:00, 3333.77it/s]
Out[20]:
Genus MeanProteomeSize SdProteomeSize MeanProteomePerc SdProteomePerc NumOfGenomes
0 Pectobacterium 4260.71 216.78 2.64 0.15 432
1 Dickeya 4176.86 155.23 2.66 0.11 206
2 Musicola 3992.00 55.76 2.31 0.05 4
3 Brenneria 4270.24 478.85 2.07 0.15 33
4 Lonsdalea 3142.28 132.55 2.45 0.09 39
5 Acerihabitans 4969.00 0.00 2.13 0.00 1
6 Affinibrenneria 5064.00 0.00 2.13 0.00 1
7 Samsonia 3489.00 0.00 2.32 0.00 1
In [21]:
pectobact_average = ['Pectobacteriaceae']
for col in proteome_perc_df.columns[1:]:
    pectobact_average.append(np.mean(list(proteome_perc_df[col])))
pectobact_average[-1] == 660

df = pd.DataFrame([pectobact_average], columns=proteome_perc_df.columns)
pd.concat([proteome_perc_df, df], ignore_index=True, axis=0).round(2)
Out[21]:
Genus MeanProteomeSize SdProteomeSize MeanProteomePerc SdProteomePerc NumOfGenomes
0 Pectobacterium 4260.71 216.78 2.64 0.15 432.00
1 Dickeya 4176.86 155.23 2.66 0.11 206.00
2 Musicola 3992.00 55.76 2.31 0.05 4.00
3 Brenneria 4270.24 478.85 2.07 0.15 33.00
4 Lonsdalea 3142.28 132.55 2.45 0.09 39.00
5 Acerihabitans 4969.00 0.00 2.13 0.00 1.00
6 Affinibrenneria 5064.00 0.00 2.13 0.00 1.00
7 Samsonia 3489.00 0.00 2.32 0.00 1.00
8 Pectobacteriaceae 4170.51 129.90 2.34 0.07 89.62

Combine into a single dataframe¶

For easier comparison and presentation, combine the dataframes made above into a single dataframe, with each row representing a different genus.

In [22]:
all_df = pd.concat([proteome_perc_df, cazome_sizes_df, cazome_fams_df, cazome_ratio_df], axis=1, join='inner')
make_output_directory(Path('../results/cazome_size'), force=True, nodelete=True)
all_df.to_csv('../results/cazome_size/cazome_sizes.csv')
all_df
Output directory ../results/cazome_size exists, nodelete is True. Adding output to output directory.
Out[22]:
Genus MeanProteomeSize SdProteomeSize MeanProteomePerc SdProteomePerc NumOfGenomes Genus MeanProteins SdProteins NumOfGenomes Genus MeanFamilys SdFamilys NumOfGenomes Genus MeanCAZymeToFamRatio SdCAZymeToFamRatio NumOfGenomes
0 Pectobacterium 4260.71 216.78 2.64 0.15 432 Pectobacterium 112.65 8.02 432 Pectobacterium 62.08 3.46 432 Pectobacterium 1.81 0.09 432
1 Dickeya 4176.86 155.23 2.66 0.11 206 Dickeya 111.16 6.60 206 Dickeya 59.05 3.04 206 Dickeya 1.88 0.07 206
2 Musicola 3992.00 55.76 2.31 0.05 4 Musicola 92.25 2.28 4 Musicola 50.25 0.43 4 Musicola 1.84 0.04 4
3 Brenneria 4270.24 478.85 2.07 0.15 33 Brenneria 87.79 7.46 33 Brenneria 53.67 3.71 33 Brenneria 1.64 0.07 33
4 Lonsdalea 3142.28 132.55 2.45 0.09 39 Lonsdalea 77.15 4.70 39 Lonsdalea 42.62 2.14 39 Lonsdalea 1.81 0.07 39
5 Acerihabitans 4969.00 0.00 2.13 0.00 1 Acerihabitans 106.00 0.00 1 Acerihabitans 48.00 0.00 1 Acerihabitans 2.21 0.00 1
6 Affinibrenneria 5064.00 0.00 2.13 0.00 1 Affinibrenneria 108.00 0.00 1 Affinibrenneria 48.00 0.00 1 Affinibrenneria 2.25 0.00 1
7 Samsonia 3489.00 0.00 2.32 0.00 1 Samsonia 81.00 0.00 1 Samsonia 49.00 0.00 1 Samsonia 1.65 0.00 1
In [23]:
# calculate means for Pectobacteriaceae
for col in all_df:
    if col == 'Genus' or col == 'NumOfGenomes':
        continue
    print(col, '--', np.mean(list(all_df[col])).round(2))
MeanProteomeSize -- 4170.51
SdProteomeSize -- 129.9
MeanProteomePerc -- 2.34
SdProteomePerc -- 0.07
MeanProteins -- 97.0
SdProteins -- 3.63
MeanFamilys -- 51.58
SdFamilys -- 1.6
MeanCAZymeToFamRatio -- 1.89
SdCAZymeToFamRatio -- 0.04

Test if there are statistically signficant differences between the means¶

For each parameter:

  • Proteome size
  • Percentage of proteome encapsulated by the CAZome
  • CAZome size
  • Number of CAZy families in the CAZome

Build a box and whisker plot over laid by a one dimensional scatter plot, with one data point per genome.

Test if there any statitically signficant differences in the means between the genera using a one-way ANOVA test (P<0.05).

If a statistically significant differnce is detected, using a post hoc Turkey HDS test (<0.05) to determine between which genera the means are statistically significantly different and in which direction.

To test if there is any statitically signficant difference in the means between soft plant tissue targeting genera:

  • Pectobacterium
  • Dickeya

and the hard plant tissue targeting genera:

  • Affinibrenneria
  • Acerhabitans
  • Brenneria
  • Lonsdalea
  • Samsonia

and Musicola (which presently does not have a well defined preference for soft or hard plant tissue, use a one-way ANOVA test (P<0.05).

If a statistically significant differnce is detected, using a post hoc Turkey HDS test (<0.05) to determine between which groups the means are statistically significantly different and in which direction.

In [24]:
# go down to one Genus column
genus = []
for i in range(len(all_df)):
    genus.append(
        all_df.iloc[i]['Genus'].values[0]
    )

try:
    all_df = all_df.drop('Genus', axis=1)
except KeyError:
    pass

all_df['Genus'] = genus

# Define the soft and hard plant tissue targeting genera that are represented by multiple genomes
soft = ['Pectobacterium','Dickeya']
hard = ['Lonsdalea', 'Brenneria']

Test if there is a difference in proteome size¶

First test between the genera

In [25]:
# build df with each genome represented as a different row / observation
proteome_data = []
for genus in proteome_dict:
    for genome in proteome_dict[genus]:
        proteome_data.append([genus, proteome_dict[genus][genome]['numOfProteins']])
proteome_size_df = pd.DataFrame(proteome_data, columns=['Genus','ProteomeSize'])

# One way Anova using scipy
f_oneway(
    proteome_size_df['ProteomeSize'][proteome_size_df['Genus'] == 'Pectobacterium'],
    proteome_size_df['ProteomeSize'][proteome_size_df['Genus'] == 'Dickeya'],
    proteome_size_df['ProteomeSize'][proteome_size_df['Genus'] == 'Musicola'],
    proteome_size_df['ProteomeSize'][proteome_size_df['Genus'] == 'Lonsdalea'],
    proteome_size_df['ProteomeSize'][proteome_size_df['Genus'] == 'Brenneria'],
    proteome_size_df['ProteomeSize'][proteome_size_df['Genus'] == 'Affinibrenneria'],
    proteome_size_df['ProteomeSize'][proteome_size_df['Genus'] == 'Acerihabitans'],
    proteome_size_df['ProteomeSize'][proteome_size_df['Genus'] == 'Samsonia'],    
)
Out[25]:
F_onewayResult(statistic=142.25683602203867, pvalue=1.5932408551086004e-130)

Post hoc test to find out which genera are differing.

In [26]:
proteome_size_turkey = pairwise_tukeyhsd(
    endog=proteome_size_df['ProteomeSize'],
    groups=proteome_size_df['Genus'],
    alpha=0.05,   # cut off
)
prot_size_turkey_df = pd.DataFrame(
    proteome_size_turkey._results_table[1:],
    columns=proteome_size_turkey._results_table.data[0]
)
prot_size_turkey_df.to_csv("../results/cazome_size/proteome_size_turkey_results.csv")
prot_size_turkey_df
Out[26]:
group1 group2 meandiff p-adj lower upper reject
0 Acerihabitans Affinibrenneria 95.0 1.0 -839.9267 1029.9267 False
1 Acerihabitans Brenneria -698.7576 0.0344 -1369.7924 -27.7227 True
2 Acerihabitans Dickeya -792.1408 0.0072 -1454.8365 -129.4451 True
3 Acerihabitans Lonsdalea -1826.7179 0.0 -2496.2329 -1157.203 True
4 Acerihabitans Musicola -977.0 0.0017 -1716.1245 -237.8755 True
5 Acerihabitans Pectobacterium -708.287 0.0262 -1370.1448 -46.4293 True
6 Acerihabitans Samsonia -1480.0 0.0 -2414.9267 -545.0733 True
7 Affinibrenneria Brenneria -793.7576 0.0083 -1464.7924 -122.7227 True
8 Affinibrenneria Dickeya -887.1408 0.0014 -1549.8365 -224.4451 True
9 Affinibrenneria Lonsdalea -1921.7179 0.0 -2591.2329 -1252.203 True
10 Affinibrenneria Musicola -1072.0 0.0003 -1811.1245 -332.8755 True
11 Affinibrenneria Pectobacterium -803.287 0.0059 -1465.1448 -141.4293 True
12 Affinibrenneria Samsonia -1575.0 0.0 -2509.9267 -640.0733 True
13 Brenneria Dickeya -93.3832 0.3004 -217.3402 30.5738 False
14 Brenneria Lonsdalea -1127.9604 0.0 -1284.3254 -971.5954 True
15 Brenneria Musicola -278.2424 0.2348 -628.2492 71.7644 False
16 Brenneria Pectobacterium -9.5295 1.0 -128.9256 109.8667 False
17 Brenneria Samsonia -781.2424 0.0101 -1452.2773 -110.2076 True
18 Dickeya Lonsdalea -1034.5772 0.0 -1150.0234 -919.131 True
19 Dickeya Musicola -184.8592 0.6978 -518.5995 148.881 False
20 Dickeya Pectobacterium 83.8537 0.0002 27.8783 139.8292 True
21 Dickeya Samsonia -687.8592 0.0355 -1350.5549 -25.1635 True
22 Lonsdalea Musicola 849.7179 0.0 502.634 1196.8019 True
23 Lonsdalea Pectobacterium 1118.4309 0.0 1007.8962 1228.9657 True
24 Lonsdalea Samsonia 346.7179 0.7657 -322.797 1016.2329 False
25 Musicola Pectobacterium 268.713 0.2146 -63.3603 600.7863 False
26 Musicola Samsonia -503.0 0.4363 -1242.1245 236.1245 False
27 Pectobacterium Samsonia -771.713 0.0099 -1433.5707 -109.8552 True
In [27]:
g = sns.stripplot(
    x=proteome_size_df['Genus'],
    y=proteome_size_df['ProteomeSize'],
    color='black',
    alpha=0.75,
    size=3,
);
g = sns.boxplot(
    x=proteome_size_df['Genus'],
    y=proteome_size_df['ProteomeSize'],
    fliersize=0,
);
g.set_ylabel(ylabel='Number of proteins in the CAZome')
plt.xticks(rotation=90)
plt.savefig(
    "../results/cazome_size/proteome_size_boxplot.png",
    bbox_inches='tight',
    format='png'
)

Test between soft and hard plant tissue targeting genera.

In [28]:
soft_hard_dict = {
    'Pectobacterium': 'Soft',
    'Dickeya': 'Soft',
    'Musicola': 'Unknown',
    'Brenneria': 'Hard',
    'Lonsdalea': 'Hard',
    'Acerihabitans': 'Hard',
    'Affinibrenneria': 'Hard',
    'Samsonia': 'Hard',
}
pheno_col = []
for i in range(len(proteome_size_df)):
    pheno_col.append(soft_hard_dict[proteome_size_df.iloc[i]['Genus']])
proteome_size_df['Phenotype'] = pheno_col

f_oneway(
    proteome_size_df['ProteomeSize'][proteome_size_df['Phenotype'] == 'Soft'],
    proteome_size_df['ProteomeSize'][proteome_size_df['Phenotype'] == 'Hard'],
    proteome_size_df['ProteomeSize'][proteome_size_df['Phenotype'] == 'Unknown'],
)
Out[28]:
F_onewayResult(statistic=115.73644297310237, pvalue=2.907639003391272e-44)
In [29]:
proteome_size_turkey = pairwise_tukeyhsd(
    endog=proteome_size_df['ProteomeSize'],
    groups=proteome_size_df['Phenotype'],
    alpha=0.05,   # cut off
)
prot_size_turkey_pheno_df = pd.DataFrame(
    proteome_size_turkey._results_table[1:],
    columns=proteome_size_turkey._results_table.data[0]
)
prot_size_turkey_pheno_df.to_csv("../results/cazome_size/proteome_size_turkey_phenotype_results.csv")
prot_size_turkey_pheno_df
Out[29]:
group1 group2 meandiff p-adj lower upper reject
0 Hard Soft 540.4513 0.0 456.7338 624.1688 True
1 Hard Unknown 298.8133 0.1144 -53.124 650.7507 False
2 Soft Unknown -241.6379 0.2255 -585.623 102.3472 False

Test if there is a difference in percentage of the proteome in the CAZome¶

First test for differences between the genera.

In [30]:
# build df with each genome represented as a different row / observation
proteome_perc_data = []
for genus in proteome_dict:
    for genome in proteome_dict[genus]:
        perc = (
            cazome_sizes_dict[genus][genome]['numOfProteins'] / 
            proteome_dict[genus][genome]['numOfProteins']
        ) * 100
        proteome_perc_data.append([genus, perc])
proteome_perc_df = pd.DataFrame(proteome_perc_data, columns=['Genus','ProteomePerc'])

# One way Anova using scipy
f_oneway(
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Genus'] == 'Pectobacterium'],
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Genus'] == 'Dickeya'],
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Genus'] == 'Musicola'],
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Genus'] == 'Lonsdalea'],
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Genus'] == 'Brenneria'],
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Genus'] == 'Affinibrenneria'],
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Genus'] == 'Acerihabitans'],
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Genus'] == 'Samsonia'],    
)
Out[30]:
F_onewayResult(statistic=100.22498879010466, pvalue=1.569439830366814e-101)
In [31]:
# follow up with a post hoc test to see which genera differ 
proteome_perc_turkey = pairwise_tukeyhsd(
    endog=proteome_perc_df['ProteomePerc'],
    groups=proteome_perc_df['Genus'],
    alpha=0.05,   # cut off
)
prot_per_turkey_df = pd.DataFrame(
    proteome_perc_turkey._results_table[1:],
    columns=proteome_perc_turkey._results_table.data[0]
)
prot_per_turkey_df.to_csv("../results/cazome_size/proteome_perc_turkey_results.csv")
prot_per_turkey_df
Out[31]:
group1 group2 meandiff p-adj lower upper reject
0 Acerihabitans Affinibrenneria -0.0005 1.0 -0.5762 0.5751 False
1 Acerihabitans Brenneria -0.0662 0.9997 -0.4793 0.347 False
2 Acerihabitans Dickeya 0.5273 0.0024 0.1192 0.9353 True
3 Acerihabitans Lonsdalea 0.3215 0.2572 -0.0907 0.7337 False
4 Acerihabitans Musicola 0.1777 0.9356 -0.2774 0.6327 False
5 Acerihabitans Pectobacterium 0.5105 0.0038 0.103 0.918 True
6 Acerihabitans Samsonia 0.1884 0.9752 -0.3873 0.764 False
7 Affinibrenneria Brenneria -0.0656 0.9997 -0.4788 0.3475 False
8 Affinibrenneria Dickeya 0.5278 0.0023 0.1198 0.9358 True
9 Affinibrenneria Lonsdalea 0.322 0.2553 -0.0902 0.7343 False
10 Affinibrenneria Musicola 0.1782 0.9347 -0.2769 0.6333 False
11 Affinibrenneria Pectobacterium 0.511 0.0037 0.1035 0.9185 True
12 Affinibrenneria Samsonia 0.1889 0.9748 -0.3868 0.7645 False
13 Brenneria Dickeya 0.5934 0.0 0.5171 0.6697 True
14 Brenneria Lonsdalea 0.3877 0.0 0.2914 0.484 True
15 Brenneria Musicola 0.2438 0.0142 0.0283 0.4593 True
16 Brenneria Pectobacterium 0.5767 0.0 0.5031 0.6502 True
17 Brenneria Samsonia 0.2545 0.5702 -0.1586 0.6677 False
18 Dickeya Lonsdalea -0.2057 0.0 -0.2768 -0.1347 True
19 Dickeya Musicola -0.3496 0.0 -0.5551 -0.1441 True
20 Dickeya Pectobacterium -0.0168 0.8188 -0.0512 0.0177 False
21 Dickeya Samsonia -0.3389 0.1866 -0.7469 0.0691 False
22 Lonsdalea Musicola -0.1439 0.4512 -0.3576 0.0698 False
23 Lonsdalea Pectobacterium 0.189 0.0 0.1209 0.257 True
24 Lonsdalea Samsonia -0.1332 0.9769 -0.5454 0.2791 False
25 Musicola Pectobacterium 0.3328 0.0 0.1284 0.5373 True
26 Musicola Samsonia 0.0107 1.0 -0.4444 0.4658 False
27 Pectobacterium Samsonia -0.3221 0.2413 -0.7296 0.0854 False
In [32]:
g = sns.stripplot(
    x=proteome_perc_df['Genus'],
    y=proteome_perc_df['ProteomePerc'],
    color='black',
    alpha=0.75,
    size=3,
);
g = sns.boxplot(
    x=proteome_perc_df['Genus'],
    y=proteome_perc_df['ProteomePerc'],
    fliersize=0,
);
g.set_ylabel(ylabel='Percentage of proteome in the CAZome')
plt.xticks(rotation=90)
plt.savefig(
    "../results/cazome_size/proteome_perc_boxplot.png",
    bbox_inches='tight',
    format='png'
)

Next test for differences between soft and hard plant tissue targeting genomes.

In [33]:
pheno_col = []
for i in range(len(proteome_perc_df)):
    pheno_col.append(soft_hard_dict[proteome_perc_df.iloc[i]['Genus']])
proteome_perc_df['Phenotype'] = pheno_col

f_oneway(
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Phenotype'] == 'Soft'],
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Phenotype'] == 'Hard'],
    proteome_perc_df['ProteomePerc'][proteome_perc_df['Phenotype'] == 'Unknown'],
)
Out[33]:
F_onewayResult(statistic=226.22200801781082, pvalue=7.940529938618575e-77)
In [34]:
# follow up with a post hoc test to see which genera differ 
proteome_perc_pheno_turkey = pairwise_tukeyhsd(
    endog=proteome_perc_df['ProteomePerc'],
    groups=proteome_perc_df['Phenotype'],
    alpha=0.05,   # cut off
)
prot_per_pheno_turkey_df = pd.DataFrame(
    proteome_perc_pheno_turkey._results_table[1:],
    columns=proteome_perc_pheno_turkey._results_table.data[0]
)
prot_per_pheno_turkey_df.to_csv("../results/cazome_size/proteome_perc_turkey_phenotype_results.csv")
prot_per_pheno_turkey_df
Out[34]:
group1 group2 meandiff p-adj lower upper reject
0 Hard Soft 0.3753 0.0 0.3331 0.4175 True
1 Hard Unknown 0.0371 0.8757 -0.1404 0.2145 False
2 Soft Unknown -0.3382 0.0 -0.5117 -0.1648 True

Test if there is a difference in number of proteins in the CAZome¶

First test between the genera

In [35]:
# build df with each genome represented as a different row / observation
cazome_s_data = []
for genus in cazome_sizes_dict:
    for genome in cazome_sizes_dict[genus]:
        cazome_s_data.append([genus, cazome_sizes_dict[genus][genome]['numOfProteins']])
cazome_s_df = pd.DataFrame(cazome_s_data, columns=['Genus','CAZomeSize'])

# One way Anova using scipy
f_oneway(
    cazome_s_df['CAZomeSize'][cazome_s_df['Genus'] == 'Pectobacterium'],
    cazome_s_df['CAZomeSize'][cazome_s_df['Genus'] == 'Dickeya'],
    cazome_s_df['CAZomeSize'][cazome_s_df['Genus'] == 'Musicola'],
    cazome_s_df['CAZomeSize'][cazome_s_df['Genus'] == 'Lonsdalea'],
    cazome_s_df['CAZomeSize'][cazome_s_df['Genus'] == 'Brenneria'],
    cazome_s_df['CAZomeSize'][cazome_s_df['Genus'] == 'Affinibrenneria'],
    cazome_s_df['CAZomeSize'][cazome_s_df['Genus'] == 'Acerihabitans'],
    cazome_s_df['CAZomeSize'][cazome_s_df['Genus'] == 'Samsonia'],    
)
Out[35]:
F_onewayResult(statistic=161.55655161375054, pvalue=3.282343275946478e-142)
In [36]:
# follow up with a post hoc test to see which genera differ 
cazome_size_turkey = pairwise_tukeyhsd(
    endog=cazome_s_df['CAZomeSize'],
    groups=cazome_s_df['Genus'],
    alpha=0.05,   # cut off
)
cazome_size_turkey_df = pd.DataFrame(
    cazome_size_turkey._results_table[1:],
    columns=cazome_size_turkey._results_table.data[0]
)
cazome_size_turkey_df.to_csv("../results/cazome_size/cazome_size_turkey_results.csv")
cazome_size_turkey_df
Out[36]:
group1 group2 meandiff p-adj lower upper reject
0 Acerihabitans Affinibrenneria 2.0 1.0 -30.0935 34.0935 False
1 Acerihabitans Brenneria -18.2121 0.2411 -41.2469 4.8227 False
2 Acerihabitans Dickeya 5.1602 0.9973 -17.5883 27.9087 False
3 Acerihabitans Lonsdalea -28.8462 0.0037 -51.8288 -5.8635 True
4 Acerihabitans Musicola -13.75 0.7211 -39.1221 11.6221 False
5 Acerihabitans Pectobacterium 6.6458 0.987 -16.0739 29.3656 False
6 Acerihabitans Samsonia -25.0 0.2588 -57.0935 7.0935 False
7 Affinibrenneria Brenneria -20.2121 0.1344 -43.2469 2.8227 False
8 Affinibrenneria Dickeya 3.1602 0.9999 -19.5883 25.9087 False
9 Affinibrenneria Lonsdalea -30.8462 0.0013 -53.8288 -7.8635 True
10 Affinibrenneria Musicola -15.75 0.5603 -41.1221 9.6221 False
11 Affinibrenneria Pectobacterium 4.6458 0.9986 -18.0739 27.3656 False
12 Affinibrenneria Samsonia -27.0 0.1735 -59.0935 5.0935 False
13 Brenneria Dickeya 23.3723 0.0 19.1172 27.6274 True
14 Brenneria Lonsdalea -10.634 0.0 -16.0016 -5.2664 True
15 Brenneria Musicola 4.4621 0.9504 -7.5527 16.4769 False
16 Brenneria Pectobacterium 24.858 0.0 20.7594 28.9565 True
17 Brenneria Samsonia -6.7879 0.9864 -29.8227 16.2469 False
18 Dickeya Lonsdalea -34.0063 0.0 -37.9693 -30.0434 True
19 Dickeya Musicola -18.9102 0.0 -30.3666 -7.4538 True
20 Dickeya Pectobacterium 1.4856 0.2679 -0.4358 3.4071 False
21 Dickeya Samsonia -30.1602 0.0016 -52.9087 -7.4117 True
22 Lonsdalea Musicola 15.0962 0.0032 3.1817 27.0106 True
23 Lonsdalea Pectobacterium 35.492 0.0 31.6976 39.2863 True
24 Lonsdalea Samsonia 3.8462 0.9996 -19.1365 26.8288 False
25 Musicola Pectobacterium 20.3958 0.0 8.9967 31.795 True
26 Musicola Samsonia -11.25 0.88 -36.6221 14.1221 False
27 Pectobacterium Samsonia -31.6458 0.0007 -54.3656 -8.9261 True
In [37]:
g = sns.stripplot(
    x=cazome_s_df['Genus'],
    y=cazome_s_df['CAZomeSize'],
    color='black',
    alpha=0.75,
    size=3,
);
g = sns.boxplot(
    x=cazome_s_df['Genus'],
    y=cazome_s_df['CAZomeSize'],
    fliersize=0,
);
g.set_ylabel(ylabel='Number of proteins in the CAZome')
plt.xticks(rotation=90)
plt.savefig(
    "../results/cazome_size/cazome_size_boxplot.png",
    bbox_inches='tight',
    format='png'
)

Now test between soft and hard plant tissue targeting genomes.

In [38]:
pheno_col = []
for i in range(len(cazome_s_df)):
    pheno_col.append(soft_hard_dict[cazome_s_df.iloc[i]['Genus']])
cazome_s_df['Phenotype'] = pheno_col

f_oneway(
    cazome_s_df['CAZomeSize'][cazome_s_df['Phenotype'] == 'Soft'],
    cazome_s_df['CAZomeSize'][cazome_s_df['Phenotype'] == 'Hard'],
    cazome_s_df['CAZomeSize'][cazome_s_df['Phenotype'] == 'Unknown'],
)
Out[38]:
F_onewayResult(statistic=493.10468604523317, pvalue=3.0262355426671687e-135)
In [39]:
# follow up with a post hoc test to see which genera differ 
cazome_s_pheno_turkey = pairwise_tukeyhsd(
    endog=cazome_s_df['CAZomeSize'],
    groups=cazome_s_df['Phenotype'],
    alpha=0.05,   # cut off
)
cazome_s_pheno_turkey_df = pd.DataFrame(
    cazome_s_pheno_turkey._results_table[1:],
    columns=cazome_s_pheno_turkey._results_table.data[0]
)
cazome_s_pheno_turkey_df.to_csv("../results/cazome_size/cazome_size_turkey_phenotype_results.csv")
cazome_s_pheno_turkey_df
Out[39]:
group1 group2 meandiff p-adj lower upper reject
0 Hard Soft 29.4861 0.0 27.2598 31.7125 True
1 Hard Unknown 9.57 0.0437 0.2108 18.9292 True
2 Soft Unknown -19.9161 0.0 -29.0639 -10.7684 True

Test if there is a stat sig. difference in the mean number of CAZy families¶

First test between the genera.

In [40]:
# build df with each genome represented as a different row / observation
cazy_fam_data = []
for genus in cazome_fam_dict:
    for genome in cazome_fam_dict[genus]:
        cazy_fam_data.append([genus, cazome_fam_dict[genus][genome]['numOfFamilys']])
cazy_f_df = pd.DataFrame(cazy_fam_data, columns=['Genus','CAZyFamilies'])

# One way Anova using scipy
f_oneway(
    cazy_f_df['CAZyFamilies'][cazy_f_df['Genus'] == 'Pectobacterium'],
    cazy_f_df['CAZyFamilies'][cazy_f_df['Genus'] == 'Dickeya'],
    cazy_f_df['CAZyFamilies'][cazy_f_df['Genus'] == 'Musicola'],
    cazy_f_df['CAZyFamilies'][cazy_f_df['Genus'] == 'Lonsdalea'],
    cazy_f_df['CAZyFamilies'][cazy_f_df['Genus'] == 'Brenneria'],
    cazy_f_df['CAZyFamilies'][cazy_f_df['Genus'] == 'Affinibrenneria'],
    cazy_f_df['CAZyFamilies'][cazy_f_df['Genus'] == 'Acerihabitans'],
    cazy_f_df['CAZyFamilies'][cazy_f_df['Genus'] == 'Samsonia'],    
)
Out[40]:
F_onewayResult(statistic=208.2841856410692, pvalue=2.6418322599463134e-167)
In [41]:
# follow up with a post hoc test to see which genera differ 
cazome_fam_turkey = pairwise_tukeyhsd(
    endog=cazy_f_df['CAZyFamilies'],
    groups=cazy_f_df['Genus'],
    alpha=0.05,   # cut off
)
cazome_fam_turkey_df = pd.DataFrame(
    cazome_fam_turkey._results_table[1:],
    columns=cazome_fam_turkey._results_table.data[0]
)
cazome_fam_turkey_df.to_csv("../results/cazome_size/cazome_fam_turkey_results.csv")
cazome_fam_turkey_df
Out[41]:
group1 group2 meandiff p-adj lower upper reject
0 Acerihabitans Affinibrenneria 0.0 1.0 -14.1792 14.1792 False
1 Acerihabitans Brenneria 5.6667 0.6921 -4.5103 15.8437 False
2 Acerihabitans Dickeya 11.0485 0.0197 0.998 21.0991 True
3 Acerihabitans Lonsdalea -5.3846 0.743 -15.5386 4.7693 False
4 Acerihabitans Musicola 2.25 0.9987 -8.9597 13.4597 False
5 Acerihabitans Pectobacterium 14.0787 0.0006 4.0409 24.1165 True
6 Acerihabitans Samsonia 1.0 1.0 -13.1792 15.1792 False
7 Affinibrenneria Brenneria 5.6667 0.6921 -4.5103 15.8437 False
8 Affinibrenneria Dickeya 11.0485 0.0197 0.998 21.0991 True
9 Affinibrenneria Lonsdalea -5.3846 0.743 -15.5386 4.7693 False
10 Affinibrenneria Musicola 2.25 0.9987 -8.9597 13.4597 False
11 Affinibrenneria Pectobacterium 14.0787 0.0006 4.0409 24.1165 True
12 Affinibrenneria Samsonia 1.0 1.0 -13.1792 15.1792 False
13 Brenneria Dickeya 5.3819 0.0 3.5019 7.2618 True
14 Brenneria Lonsdalea -11.0513 0.0 -13.4227 -8.6798 True
15 Brenneria Musicola -3.4167 0.5122 -8.7249 1.8916 False
16 Brenneria Pectobacterium 8.412 0.0 6.6013 10.2228 True
17 Brenneria Samsonia -4.6667 0.86 -14.8437 5.5103 False
18 Dickeya Lonsdalea -16.4332 0.0 -18.184 -14.6823 True
19 Dickeya Musicola -8.7985 0.0 -13.8601 -3.737 True
20 Dickeya Pectobacterium 3.0302 0.0 2.1812 3.8791 True
21 Dickeya Samsonia -10.0485 0.0501 -20.0991 0.002 False
22 Lonsdalea Musicola 7.6346 0.0003 2.3707 12.8985 True
23 Lonsdalea Pectobacterium 19.4633 0.0 17.7869 21.1397 True
24 Lonsdalea Samsonia 6.3846 0.5434 -3.7693 16.5386 False
25 Musicola Pectobacterium 11.8287 0.0 6.7924 16.865 True
26 Musicola Samsonia -1.25 1.0 -12.4597 9.9597 False
27 Pectobacterium Samsonia -13.0787 0.0021 -23.1165 -3.0409 True

Scatter plot and box plot of the number of CAZy families per genome.

In [42]:
g = sns.stripplot(
    x=cazy_f_df['Genus'],
    y=cazy_f_df['CAZyFamilies'],
    color='black',
    alpha=0.75,
    size=3,
);
g = sns.boxplot(
    x=cazy_f_df['Genus'],
    y=cazy_f_df['CAZyFamilies'],
    fliersize=0,
);
g.set_ylabel(ylabel='Number of CAZyme families')
plt.xticks(rotation=90)
plt.savefig(
    "../results/cazome_size/cazy_fams_boxplot.png",
    bbox_inches='tight',
    format='png'
)

Now test between soft and hard plant tissue targeting genomes.

In [43]:
pheno_col = []
for i in range(len(cazy_f_df)):
    pheno_col.append(soft_hard_dict[cazy_f_df.iloc[i]['Genus']])
cazy_f_df['Phenotype'] = pheno_col

f_oneway(
    cazy_f_df['CAZyFamilies'][cazy_f_df['Phenotype'] == 'Soft'],
    cazy_f_df['CAZyFamilies'][cazy_f_df['Phenotype'] == 'Hard'],
    cazy_f_df['CAZyFamilies'][cazy_f_df['Phenotype'] == 'Unknown'],
)
Out[43]:
F_onewayResult(statistic=395.8267787310159, pvalue=2.1009567376244338e-116)
In [44]:
# follow up with a post hoc test to see which genera differ 
cazome_f_pheno_turkey = pairwise_tukeyhsd(
    endog=cazy_f_df['CAZyFamilies'],
    groups=cazy_f_df['Phenotype'],
    alpha=0.05,   # cut off
)
cazome_f_pheno_turkey_df = pd.DataFrame(
    cazome_f_pheno_turkey._results_table[1:],
    columns=cazome_f_pheno_turkey._results_table.data[0]
)
cazome_f_pheno_turkey_df.to_csv("../results/cazome_size/cazome_fam_turkey_phenotype_results.csv")
cazome_f_pheno_turkey_df
Out[44]:
group1 group2 meandiff p-adj lower upper reject
0 Hard Soft 13.3936 0.0 12.2593 14.528 True
1 Hard Unknown 2.5433 0.4226 -2.2253 7.312 False
2 Soft Unknown -10.8503 0.0 -15.5112 -6.1894 True

2. CAZy classes¶

Calculate the number of CAZymes (identified as the number of unique protein accessions) per CAZy class. Also, calculate the mean size of CAZy classes (i.e. the mean number of unique protein accessions per CAZy class in each genome) per genus.

The results are added to a dataframe, which is written to results/pecto_dic/cazy_class_sizes.csv, and was used to generate a proportiona area plot using RawGraphs.

In [45]:
# make output dir for results, will not delete data if dir already exists
make_output_directory(Path('../results/cazy_classes/'), force=True, nodelete=True)
Output directory ../results/cazy_classes exists, nodelete is True. Adding output to output directory.
In [46]:
class_df, class_size_dict = calculate_class_sizes(fgp_df, 'Genus', round_by=2)
Getting CAZy class sizes: 100%|█████████████████████████████████████████████████████████████| 83143/83143 [00:19<00:00, 4309.82it/s]
Calculating CAZy class sizes: 100%|██████████████████████████████████████████████████████████████████| 6/6 [00:00<00:00, 120.67it/s]
In [47]:
# add values with means across all genera to represent pectobacteriaceae
pectobact_class_means = []

for cazy_class in set(class_df['CAZyClass']):
    df = class_df[class_df['CAZyClass'] == cazy_class]
    new_row = [cazy_class, 'Pectobacteriaceae']
    
    for col in class_df.columns[2:]:
        mean = np.mean(df[col])
        new_row.append(mean)
    
    new_row[-1] = 660
    
    pectobact_class_means.append(new_row)

df = pd.DataFrame(pectobact_class_means, columns = class_df.columns)
all_class_df = pd.concat([class_df, df], axis=0, ignore_index=True)
all_class_df = all_class_df.round(2)
# replace nan with 0
all_class_df = all_class_df.fillna(0)

filtered_class_df = all_class_df[all_class_df['Genus'] != 'Haf']
all_class_df.to_csv('../results/cazy_classes/cazy_class_sizes.csv')

all_class_df
Out[47]:
CAZyClass Genus MeanCazyClass SdCazyClass MeanClassPerc SdClassPerc NumOfGenomes
0 GH Lonsdalea 30.85 2.28 39.96 1.31 39
1 GH Samsonia 34.00 0.00 41.98 0.00 1
2 GH Pectobacterium 50.11 3.91 44.50 1.87 432
3 GH Musicola 37.00 0.00 40.13 0.99 4
4 GH Brenneria 42.48 6.60 48.14 4.19 33
5 GH Affinibrenneria 59.00 0.00 54.63 0.00 1
6 GH Dickeya 42.53 3.55 38.24 1.85 206
7 GH Acerihabitans 51.00 0.00 48.11 0.00 1
8 GT Lonsdalea 32.46 2.30 42.07 1.24 39
9 GT Samsonia 25.00 0.00 30.86 0.00 1
10 GT Pectobacterium 31.76 3.86 28.15 2.23 432
11 GT Musicola 31.00 3.00 33.55 2.44 4
12 GT Brenneria 32.30 2.55 36.90 2.61 33
13 GT Affinibrenneria 35.00 0.00 32.41 0.00 1
14 GT Dickeya 37.21 3.12 33.52 2.62 206
15 GT Acerihabitans 44.00 0.00 41.51 0.00 1
16 PL Lonsdalea 3.79 0.56 4.92 0.72 39
17 PL Samsonia 8.00 0.00 9.88 0.00 1
18 PL Pectobacterium 14.78 1.36 13.14 0.97 432
19 PL Musicola 11.25 0.43 12.19 0.33 4
20 PL Brenneria 4.24 1.23 4.81 1.29 33
21 PL Affinibrenneria 1.00 0.00 0.93 0.00 1
22 PL Dickeya 16.29 1.72 14.63 1.19 206
23 PL Acerihabitans 1.00 0.00 0.94 0.00 1
24 CE Lonsdalea 3.15 0.48 4.09 0.57 39
25 CE Samsonia 8.00 0.00 9.88 0.00 1
26 CE Pectobacterium 7.12 0.83 6.33 0.68 432
27 CE Musicola 6.00 0.00 6.51 0.16 4
28 CE Brenneria 4.30 1.06 4.93 1.24 33
29 CE Affinibrenneria 7.00 0.00 6.48 0.00 1
30 CE Dickeya 7.16 0.80 6.44 0.60 206
31 CE Acerihabitans 5.00 0.00 4.72 0.00 1
32 AA Lonsdalea 0.00 0.00 0.00 0.00 39
33 AA Samsonia 1.00 0.00 1.23 0.00 1
34 AA Pectobacterium 1.03 0.16 0.91 0.17 371
35 AA Musicola 0.00 0.00 0.00 0.00 4
36 AA Brenneria 1.00 0.00 1.27 0.06 8
37 AA Affinibrenneria 0.00 0.00 0.00 0.00 1
38 AA Dickeya 1.00 0.00 0.90 0.06 85
39 AA Acerihabitans 0.00 0.00 0.00 0.00 1
40 CBM Lonsdalea 8.74 0.54 11.35 0.63 39
41 CBM Samsonia 10.00 0.00 12.35 0.00 1
42 CBM Pectobacterium 13.98 1.49 12.41 1.02 432
43 CBM Musicola 11.00 1.00 11.96 1.38 4
44 CBM Brenneria 9.36 0.64 10.74 1.17 33
45 CBM Affinibrenneria 10.00 0.00 9.26 0.00 1
46 CBM Dickeya 12.27 1.25 11.03 0.83 206
47 CBM Acerihabitans 11.00 0.00 10.38 0.00 1
48 GH Pectobacteriaceae 43.37 2.04 44.46 1.28 660
49 AA Pectobacteriaceae 0.50 0.02 0.54 0.04 660
50 CE Pectobacteriaceae 5.97 0.40 6.17 0.41 660
51 CBM Pectobacteriaceae 10.79 0.62 11.18 0.63 660
52 PL Pectobacteriaceae 7.54 0.66 7.68 0.56 660
53 GT Pectobacteriaceae 33.59 1.85 34.87 1.39 660

Statistically testing if there is a difference between soft and hard plant tissue targeting species¶

First run a two-way ANOVA across the CAZy class frequencies, evaluating the influence of the CAZy class and genus.

In [48]:
# provide each observation (genome) separately , not just the mean
class_freq_obs = []  # observations, one obs per genome - class pair
for genome in tqdm(set(fgp_df['Genome']), desc='Getting freq per class per genome'):
    class_freqs = {
        'GH': 0,
        'GT': 0,
        'PL': 0,
        'CE': 0,
        'AA': 0,
        'CBM': 0,
    }  # {class: count}
    g_rows = fgp_df[fgp_df['Genome'] == genome]
    for i in range(len(g_rows)):
        if g_rows.iloc[i]['Family'].startswith('GH'):
            class_freqs['GH'] += 1
        elif g_rows.iloc[i]['Family'].startswith('GT'):
            class_freqs['GT'] += 1
        elif g_rows.iloc[i]['Family'].startswith('PL'):
            class_freqs['PL'] += 1
        elif g_rows.iloc[i]['Family'].startswith('CE'):
            class_freqs['CE'] += 1
        elif g_rows.iloc[i]['Family'].startswith('AA'):
            class_freqs['AA'] += 1
        else:
            class_freqs['CBM'] += 1
            
    for cazy_class in class_freqs:
        class_freq_obs.append(
            [
                g_rows.iloc[0]['Genus'],
                cazy_class,
                class_freqs[cazy_class],
                soft_hard_dict[g_rows.iloc[0]['Genus']],
            ]
        )
        
class_freq_obs_df = pd.DataFrame(
    class_freq_obs,
    columns=['Genus','CAZyClass','Frequency', 'Phenotype'],
)
class_freq_obs_df.head(2)
Getting freq per class per genome:   0%|          | 0/717 [00:00<?, ?it/s]
Out[48]:
Genus CAZyClass Frequency Phenotype
0 Pectobacterium GH 55 Soft
1 Pectobacterium GT 34 Soft
In [49]:
# Test for differences between the genera and soft/hard plant tissue targeting phenotype

# perform two-way ANOVA
model = ols(
    'Frequency ~ + C(Genus) + C(CAZyClass) + C(Genus):C(CAZyClass)',
    data=class_freq_obs_df,
).fit()
sm.stats.anova_lm(model, typ=2)
Out[49]:
sum_sq df F PR(>F)
C(Genus) 1.372953e+04 7.0 137.428160 4.378316e-183
C(CAZyClass) 1.113669e+06 5.0 15606.446141 0.000000e+00
C(Genus):C(CAZyClass) 2.400325e+04 35.0 48.052939 1.698934e-276
Residual 6.071269e+04 4254.0 NaN NaN

Now break it down per CAZy class. Testing for differences between the genera, and then between the phenotypes (soft vs. hard plant tissue targeting phenotype).

For each (genera testing and phenotype testing), run a one-way ANOVA followed by a post hoc Turkey HDS test if a statistically signficant difference is detected by the ANOVA.

GH¶

In [50]:
# One way Anova using scipy
sub_class_df = class_freq_obs_df[class_freq_obs_df['CAZyClass'] == 'GH']
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Pectobacterium'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Dickeya'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Musicola'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Lonsdalea'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Brenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Affinibrenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Acerihabitans'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Samsonia'],    
)
Out[50]:
F_onewayResult(statistic=70.48729402779328, pvalue=3.718837585881247e-77)
In [51]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
gh_class_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Genus'],
    alpha=0.05,   # cut off
)
gh_class_turkey_df = pd.DataFrame(
    gh_class_turkey._results_table[1:],
    columns=gh_class_turkey._results_table.data[0]
)
gh_class_turkey_df.to_csv("../results/cazy_classes/gh_class_turkey_results.csv")
gh_class_turkey_df
Out[51]:
group1 group2 meandiff p-adj lower upper reject
0 Acerihabitans Affinibrenneria 8.0 0.9884 -19.8655 35.8655 False
1 Acerihabitans Brenneria -8.5152 0.901 -28.5153 11.485 False
2 Acerihabitans Dickeya -7.6699 0.9374 -27.4215 12.0817 False
3 Acerihabitans Lonsdalea -20.1538 0.0458 -40.1087 -0.199 True
4 Acerihabitans Musicola -14.0 0.5293 -36.0296 8.0296 False
5 Acerihabitans Pectobacterium -0.1551 1.0 -19.8818 19.5716 False
6 Acerihabitans Samsonia -17.0 0.5827 -44.8655 10.8655 False
7 Affinibrenneria Brenneria -16.5152 0.1927 -36.5153 3.485 False
8 Affinibrenneria Dickeya -15.6699 0.2371 -35.4215 4.0817 False
9 Affinibrenneria Lonsdalea -28.1538 0.0005 -48.1087 -8.199 True
10 Affinibrenneria Musicola -22.0 0.0506 -44.0296 0.0296 False
11 Affinibrenneria Pectobacterium -8.1551 0.9142 -27.8818 11.5716 False
12 Affinibrenneria Samsonia -25.0 0.1161 -52.8655 2.8655 False
13 Brenneria Dickeya 0.8452 0.9971 -2.8493 4.5398 False
14 Brenneria Lonsdalea -11.6387 0.0 -16.2992 -6.9782 True
15 Brenneria Musicola -5.4848 0.7514 -15.9168 4.9471 False
16 Brenneria Pectobacterium 8.3601 0.0 4.8015 11.9187 True
17 Brenneria Samsonia -8.4848 0.9027 -28.485 11.5153 False
18 Dickeya Lonsdalea -12.4839 0.0 -15.9248 -9.0431 True
19 Dickeya Musicola -6.3301 0.5274 -16.2772 3.617 False
20 Dickeya Pectobacterium 7.5148 0.0 5.8465 9.1832 True
21 Dickeya Samsonia -9.3301 0.8403 -29.0817 10.4215 False
22 Lonsdalea Musicola 6.1538 0.6146 -4.191 16.4987 False
23 Lonsdalea Pectobacterium 19.9988 0.0 16.7043 23.2932 True
24 Lonsdalea Samsonia 3.1538 0.9997 -16.801 23.1087 False
25 Musicola Pectobacterium 13.8449 0.0006 3.9475 23.7423 True
26 Musicola Samsonia -3.0 0.9999 -25.0296 19.0296 False
27 Pectobacterium Samsonia -16.8449 0.159 -36.5716 2.8818 False

Now test for differences between the phenotypes

In [52]:
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Soft'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Hard'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Unknown'],
)
Out[52]:
F_onewayResult(statistic=84.86443453434632, pvalue=8.597326941700086e-34)
In [53]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
gh_class_phenot_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Phenotype'],
    alpha=0.05,   # cut off
)
gh_class_turkey_pheno_df = pd.DataFrame(
    gh_class_phenot_turkey._results_table[1:],
    columns=gh_class_phenot_turkey._results_table.data[0]
)
gh_class_turkey_pheno_df.to_csv("../results/cazy_classes/gh_class_turkey_phenotype_results.csv")
gh_class_turkey_pheno_df
Out[53]:
group1 group2 meandiff p-adj lower upper reject
0 Hard Soft 11.7652 0.0 9.5977 13.9327 True
1 Hard Unknown 0.3467 0.9956 -8.7652 9.4586 False
2 Soft Unknown -11.4185 0.0076 -20.3245 -2.5125 True

GT¶

In [54]:
# One way Anova using scipy
sub_class_df = class_freq_obs_df[class_freq_obs_df['CAZyClass'] == 'GT']
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Pectobacterium'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Dickeya'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Musicola'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Lonsdalea'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Brenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Affinibrenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Acerihabitans'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Samsonia'],    
)
Out[54]:
F_onewayResult(statistic=21.25128713661445, pvalue=4.428956585432569e-26)
In [55]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
gt_class_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Genus'],
    alpha=0.05,   # cut off
)
gt_class_turkey_df = pd.DataFrame(
    gt_class_turkey._results_table[1:],
    columns=gt_class_turkey._results_table.data[0]
)
gt_class_turkey_df.to_csv("../results/cazy_classes/gt_class_turkey_results.csv")
gt_class_turkey_df
Out[55]:
group1 group2 meandiff p-adj lower upper reject
0 Acerihabitans Affinibrenneria -9.0 0.9555 -33.7332 15.7332 False
1 Acerihabitans Brenneria -11.6667 0.484 -29.4187 6.0853 False
2 Acerihabitans Dickeya -6.0437 0.9668 -23.5751 11.4877 False
3 Acerihabitans Lonsdalea -11.5385 0.4959 -29.2502 6.1733 False
4 Acerihabitans Musicola -13.0 0.4682 -32.5533 6.5533 False
5 Acerihabitans Pectobacterium -11.7361 0.4571 -29.2453 5.7731 False
6 Acerihabitans Samsonia -19.0 0.2758 -43.7332 5.7332 False
7 Affinibrenneria Brenneria -2.6667 0.9998 -20.4187 15.0853 False
8 Affinibrenneria Dickeya 2.9563 0.9996 -14.5751 20.4877 False
9 Affinibrenneria Lonsdalea -2.5385 0.9999 -20.2502 15.1733 False
10 Affinibrenneria Musicola -4.0 0.9986 -23.5533 15.5533 False
11 Affinibrenneria Pectobacterium -2.7361 0.9998 -20.2453 14.7731 False
12 Affinibrenneria Samsonia -10.0 0.9232 -34.7332 14.7332 False
13 Brenneria Dickeya 5.623 0.0 2.3437 8.9022 True
14 Brenneria Lonsdalea 0.1282 1.0 -4.0084 4.2648 False
15 Brenneria Musicola -1.3333 0.9999 -10.5926 7.926 False
16 Brenneria Pectobacterium -0.0694 1.0 -3.228 3.0891 False
17 Brenneria Samsonia -7.3333 0.9145 -25.0853 10.4187 False
18 Dickeya Lonsdalea -5.4948 0.0 -8.5489 -2.4407 True
19 Dickeya Musicola -6.9563 0.2452 -15.7853 1.8727 False
20 Dickeya Pectobacterium -5.6924 0.0 -7.1732 -4.2116 True
21 Dickeya Samsonia -12.9563 0.3252 -30.4877 4.5751 False
22 Lonsdalea Musicola -1.4615 0.9997 -10.6435 7.7204 False
23 Lonsdalea Pectobacterium -0.1976 1.0 -3.1218 2.7265 False
24 Lonsdalea Samsonia -7.4615 0.9059 -25.1733 10.2502 False
25 Musicola Pectobacterium 1.2639 0.9999 -7.521 10.0488 False
26 Musicola Samsonia -6.0 0.9828 -25.5533 13.5533 False
27 Pectobacterium Samsonia -7.2639 0.9127 -24.7731 10.2453 False
In [56]:
# one-way ANOVA the phenotypes
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Soft'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Hard'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Unknown'],
)
Out[56]:
F_onewayResult(statistic=2.6331141394580087, pvalue=0.07255204343497902)
In [57]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
gt_class_phenot_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Phenotype'],
    alpha=0.05,   # cut off
)
gt_class_turkey_pheno_df = pd.DataFrame(
    gt_class_phenot_turkey._results_table[1:],
    columns=gt_class_phenot_turkey._results_table.data[0]
)
gt_class_turkey_pheno_df.to_csv("../results/cazy_classes/gt_class_turkey_phenotype_results.csv")
gt_class_turkey_pheno_df
Out[57]:
group1 group2 meandiff p-adj lower upper reject
0 Hard Soft 1.6085 0.0911 -0.1926 3.4097 False
1 Hard Unknown -1.4933 0.8885 -9.065 6.0784 False
2 Soft Unknown -3.1019 0.587 -10.5025 4.2987 False

PL¶

In [58]:
# One way Anova using scipy
sub_class_df = class_freq_obs_df[class_freq_obs_df['CAZyClass'] == 'PL']
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Pectobacterium'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Dickeya'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Musicola'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Lonsdalea'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Brenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Affinibrenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Acerihabitans'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Samsonia'],    
)
Out[58]:
F_onewayResult(statistic=222.45853144424663, pvalue=3.5647020997539887e-174)
In [59]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
pl_class_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Genus'],
    alpha=0.05,   # cut off
)
pl_class_turkey_df = pd.DataFrame(
    pl_class_turkey._results_table[1:],
    columns=pl_class_turkey._results_table.data[0]
)
pl_class_turkey_df.to_csv("../results/cazy_classes/pl_class_turkey_results.csv")
pl_class_turkey_df
Out[59]:
group1 group2 meandiff p-adj lower upper reject
0 Acerihabitans Affinibrenneria 0.0 1.0 -10.5548 10.5548 False
1 Acerihabitans Brenneria 3.2424 0.8984 -4.3332 10.8181 False
2 Acerihabitans Dickeya 15.6019 0.0 8.1204 23.0834 True
3 Acerihabitans Lonsdalea 2.7949 0.9515 -4.7636 10.3534 False
4 Acerihabitans Musicola 10.25 0.005 1.9057 18.5943 True
5 Acerihabitans Pectobacterium 14.0162 0.0 6.5442 21.4882 True
6 Acerihabitans Samsonia 7.0 0.4716 -3.5548 17.5548 False
7 Affinibrenneria Brenneria 3.2424 0.8984 -4.3332 10.8181 False
8 Affinibrenneria Dickeya 15.6019 0.0 8.1204 23.0834 True
9 Affinibrenneria Lonsdalea 2.7949 0.9515 -4.7636 10.3534 False
10 Affinibrenneria Musicola 10.25 0.005 1.9057 18.5943 True
11 Affinibrenneria Pectobacterium 14.0162 0.0 6.5442 21.4882 True
12 Affinibrenneria Samsonia 7.0 0.4716 -3.5548 17.5548 False
13 Brenneria Dickeya 12.3595 0.0 10.9601 13.7589 True
14 Brenneria Lonsdalea -0.4476 0.9945 -2.2128 1.3177 False
15 Brenneria Musicola 7.0076 0.0 3.0562 10.959 True
16 Brenneria Pectobacterium 10.7738 0.0 9.4259 12.1217 True
17 Brenneria Samsonia 3.7576 0.8033 -3.8181 11.3332 False
18 Dickeya Lonsdalea -12.8071 0.0 -14.1104 -11.5037 True
19 Dickeya Musicola -5.3519 0.0005 -9.1197 -1.5842 True
20 Dickeya Pectobacterium -1.5857 0.0 -2.2177 -0.9538 True
21 Dickeya Samsonia -8.6019 0.0118 -16.0834 -1.1204 True
22 Lonsdalea Musicola 7.4551 0.0 3.5367 11.3735 True
23 Lonsdalea Pectobacterium 11.2213 0.0 9.9735 12.4692 True
24 Lonsdalea Samsonia 4.2051 0.693 -3.3534 11.7636 False
25 Musicola Pectobacterium 3.7662 0.048 0.0173 7.5151 True
26 Musicola Samsonia -3.25 0.9364 -11.5943 5.0943 False
27 Pectobacterium Samsonia -7.0162 0.0837 -14.4882 0.4558 False
In [60]:
# one-way ANOVA the phenotypes
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Soft'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Hard'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Unknown'],
)
Out[60]:
F_onewayResult(statistic=689.0535233630009, pvalue=2.0980145132039776e-167)
In [61]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
pl_class_phenot_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Phenotype'],
    alpha=0.05,   # cut off
)
pl_class_turkey_pheno_df = pd.DataFrame(
    pl_class_phenot_turkey._results_table[1:],
    columns=pl_class_phenot_turkey._results_table.data[0]
)
pl_class_turkey_pheno_df.to_csv("../results/cazy_classes/pl_class_turkey_phenotype_results.csv")
pl_class_turkey_pheno_df
Out[61]:
group1 group2 meandiff p-adj lower upper reject
0 Hard Soft 11.5549 0.0 10.8223 12.2874 True
1 Hard Unknown 7.2767 0.0 4.1971 10.3562 True
2 Soft Unknown -4.2782 0.0026 -7.2882 -1.2683 True

CE¶

In [62]:
# One way Anova using scipy
sub_class_df = class_freq_obs_df[class_freq_obs_df['CAZyClass'] == 'CE']
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Pectobacterium'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Dickeya'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Musicola'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Lonsdalea'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Brenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Affinibrenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Acerihabitans'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Samsonia'],    
)
Out[62]:
F_onewayResult(statistic=103.88807201350583, pvalue=2.7639451642084564e-104)
In [63]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
ce_class_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Genus'],
    alpha=0.05,   # cut off
)
ce_class_turkey_df = pd.DataFrame(
    ce_class_turkey._results_table[1:],
    columns=ce_class_turkey._results_table.data[0]
)
ce_class_turkey_df.to_csv("../results/cazy_classes/ce_class_turkey_results.csv")
ce_class_turkey_df
Out[63]:
group1 group2 meandiff p-adj lower upper reject
0 Acerihabitans Affinibrenneria 2.0 0.8959 -2.6483 6.6483 False
1 Acerihabitans Brenneria -0.697 0.9984 -4.0332 2.6393 False
2 Acerihabitans Dickeya 2.2767 0.4155 -1.0181 5.5715 False
3 Acerihabitans Lonsdalea -1.8462 0.6964 -5.1749 1.4826 False
4 Acerihabitans Musicola 1.0 0.9916 -2.6748 4.6748 False
5 Acerihabitans Pectobacterium 2.2176 0.4497 -1.0731 5.5082 False
6 Acerihabitans Samsonia 3.0 0.5085 -1.6483 7.6483 False
7 Affinibrenneria Brenneria -2.697 0.2157 -6.0332 0.6393 False
8 Affinibrenneria Dickeya 0.2767 1.0 -3.0181 3.5715 False
9 Affinibrenneria Lonsdalea -3.8462 0.0111 -7.1749 -0.5174 True
10 Affinibrenneria Musicola -1.0 0.9916 -4.6748 2.6748 False
11 Affinibrenneria Pectobacterium 0.2176 1.0 -3.0731 3.5082 False
12 Affinibrenneria Samsonia 1.0 0.998 -3.6483 5.6483 False
13 Brenneria Dickeya 2.9737 0.0 2.3574 3.59 True
14 Brenneria Lonsdalea -1.1492 0.0002 -1.9266 -0.3718 True
15 Brenneria Musicola 1.697 0.062 -0.0432 3.4371 False
16 Brenneria Pectobacterium 2.9146 0.0 2.3209 3.5082 True
17 Brenneria Samsonia 3.697 0.018 0.3607 7.0332 True
18 Dickeya Lonsdalea -4.1229 0.0 -4.6968 -3.5489 True
19 Dickeya Musicola -1.2767 0.2739 -2.936 0.3826 False
20 Dickeya Pectobacterium -0.0591 0.9982 -0.3374 0.2192 False
21 Dickeya Samsonia 0.7233 0.9978 -2.5715 4.0181 False
22 Lonsdalea Musicola 2.8462 0.0 1.1205 4.5718 True
23 Lonsdalea Pectobacterium 4.0637 0.0 3.5142 4.6133 True
24 Lonsdalea Samsonia 4.8462 0.0003 1.5174 8.1749 True
25 Musicola Pectobacterium 1.2176 0.3279 -0.4334 2.8686 False
26 Musicola Samsonia 2.0 0.7166 -1.6748 5.6748 False
27 Pectobacterium Samsonia 0.7824 0.9963 -2.5082 4.0731 False
In [64]:
# one-way ANOVA the phenotypes
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Soft'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Hard'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Unknown'],
)
Out[64]:
F_onewayResult(statistic=321.59905675699997, pvalue=2.6098906666833877e-100)
In [65]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
ce_class_phenot_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Phenotype'],
    alpha=0.05,   # cut off
)
ce_class_turkey_pheno_df = pd.DataFrame(
    ce_class_phenot_turkey._results_table[1:],
    columns=ce_class_phenot_turkey._results_table.data[0]
)
ce_class_turkey_pheno_df.to_csv("../results/cazy_classes/ce_class_turkey_phenotype_results.csv")
ce_class_turkey_pheno_df
Out[65]:
group1 group2 meandiff p-adj lower upper reject
0 Hard Soft 3.4367 0.0 3.1178 3.7555 True
1 Hard Unknown 2.2 0.0004 0.8595 3.5405 True
2 Soft Unknown -1.2367 0.069 -2.5469 0.0735 False

AA¶

In [66]:
# One way Anova using scipy
sub_class_df = class_freq_obs_df[class_freq_obs_df['CAZyClass'] == 'AA']
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Pectobacterium'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Dickeya'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Musicola'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Lonsdalea'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Brenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Affinibrenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Acerihabitans'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Samsonia'],    
)
Out[66]:
F_onewayResult(statistic=48.76173592829987, pvalue=1.3727065409992368e-56)
In [67]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
aa_class_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Genus'],
    alpha=0.05,   # cut off
)
aa_class_turkey_df = pd.DataFrame(
    aa_class_turkey._results_table[1:],
    columns=aa_class_turkey._results_table.data[0]
)
aa_class_turkey_df.to_csv("../results/cazy_classes/aa_class_turkey_results.csv")
aa_class_turkey_df
Out[67]:
group1 group2 meandiff p-adj lower upper reject
0 Acerihabitans Affinibrenneria 0.0 1.0 -1.7994 1.7994 False
1 Acerihabitans Brenneria 0.2424 0.9992 -1.0491 1.5339 False
2 Acerihabitans Dickeya 0.4126 0.9767 -0.8628 1.6881 False
3 Acerihabitans Lonsdalea 0.0 1.0 -1.2886 1.2886 False
4 Acerihabitans Musicola 0.0 1.0 -1.4225 1.4225 False
5 Acerihabitans Pectobacterium 0.8843 0.4092 -0.3896 2.1581 False
6 Acerihabitans Samsonia 1.0 0.6942 -0.7994 2.7994 False
7 Affinibrenneria Brenneria 0.2424 0.9992 -1.0491 1.5339 False
8 Affinibrenneria Dickeya 0.4126 0.9767 -0.8628 1.6881 False
9 Affinibrenneria Lonsdalea 0.0 1.0 -1.2886 1.2886 False
10 Affinibrenneria Musicola 0.0 1.0 -1.4225 1.4225 False
11 Affinibrenneria Pectobacterium 0.8843 0.4092 -0.3896 2.1581 False
12 Affinibrenneria Samsonia 1.0 0.6942 -0.7994 2.7994 False
13 Brenneria Dickeya 0.1702 0.3721 -0.0684 0.4088 False
14 Brenneria Lonsdalea -0.2424 0.2197 -0.5434 0.0585 False
15 Brenneria Musicola -0.2424 0.958 -0.9161 0.4312 False
16 Brenneria Pectobacterium 0.6418 0.0 0.412 0.8716 True
17 Brenneria Samsonia 0.7576 0.6317 -0.5339 2.0491 False
18 Dickeya Lonsdalea -0.4126 0.0 -0.6348 -0.1904 True
19 Dickeya Musicola -0.4126 0.5148 -1.055 0.2297 False
20 Dickeya Pectobacterium 0.4716 0.0 0.3639 0.5794 True
21 Dickeya Samsonia 0.5874 0.8573 -0.6881 1.8628 False
22 Lonsdalea Musicola 0.0 1.0 -0.668 0.668 False
23 Lonsdalea Pectobacterium 0.8843 0.0 0.6715 1.097 True
24 Lonsdalea Samsonia 1.0 0.2634 -0.2886 2.2886 False
25 Musicola Pectobacterium 0.8843 0.0008 0.2451 1.5234 True
26 Musicola Samsonia 1.0 0.392 -0.4225 2.4225 False
27 Pectobacterium Samsonia 0.1157 1.0 -1.1581 1.3896 False
In [68]:
# one-way ANOVA the phenotypes
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Soft'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Hard'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Unknown'],
)
Out[68]:
F_onewayResult(statistic=61.148610732738945, pvalue=3.072615168467825e-25)
In [69]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
aa_class_phenot_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Phenotype'],
    alpha=0.05,   # cut off
)
aa_class_turkey_pheno_df = pd.DataFrame(
    aa_class_phenot_turkey._results_table[1:],
    columns=aa_class_phenot_turkey._results_table.data[0]
)
aa_class_turkey_pheno_df.to_csv("../results/cazy_classes/aa_class_turkey_phenotype_results.csv")
aa_class_turkey_pheno_df
Out[69]:
group1 group2 meandiff p-adj lower upper reject
0 Hard Soft 0.612 0.0 0.4775 0.7464 True
1 Hard Unknown -0.12 0.872 -0.6853 0.4453 False
2 Soft Unknown -0.732 0.0055 -1.2845 -0.1794 True

CBM¶

In [70]:
# One way Anova using scipy
sub_class_df = class_freq_obs_df[class_freq_obs_df['CAZyClass'] == 'CBM']
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Pectobacterium'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Dickeya'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Musicola'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Lonsdalea'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Brenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Affinibrenneria'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Acerihabitans'],
    sub_class_df['Frequency'][sub_class_df['Genus'] == 'Samsonia'],    
)
Out[70]:
F_onewayResult(statistic=80.88764296424834, pvalue=4.027926882977604e-86)
In [71]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
cbm_class_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Genus'],
    alpha=0.05,   # cut off
)
cbm_class_turkey_df = pd.DataFrame(
    cbm_class_turkey._results_table[1:],
    columns=cbm_class_turkey._results_table.data[0]
)
cbm_class_turkey_df.to_csv("../results/cazy_classes/cbm_class_turkey_results.csv")
cbm_class_turkey_df
Out[71]:
group1 group2 meandiff p-adj lower upper reject
0 Acerihabitans Affinibrenneria -1.0 0.9999 -8.6335 6.6335 False
1 Acerihabitans Brenneria -1.6364 0.9853 -7.1152 3.8425 False
2 Acerihabitans Dickeya 1.4272 0.993 -3.9836 6.838 False
3 Acerihabitans Lonsdalea -2.2564 0.9148 -7.7229 3.2101 False
4 Acerihabitans Musicola 0.0 1.0 -6.0348 6.0348 False
5 Acerihabitans Pectobacterium 3.1204 0.6506 -2.2836 8.5243 False
6 Acerihabitans Samsonia -1.0 0.9999 -8.6335 6.6335 False
7 Affinibrenneria Brenneria -0.6364 1.0 -6.1152 4.8425 False
8 Affinibrenneria Dickeya 2.4272 0.8734 -2.9836 7.838 False
9 Affinibrenneria Lonsdalea -1.2564 0.997 -6.7229 4.2101 False
10 Affinibrenneria Musicola 1.0 0.9996 -5.0348 7.0348 False
11 Affinibrenneria Pectobacterium 4.1204 0.2852 -1.2836 9.5243 False
12 Affinibrenneria Samsonia 0.0 1.0 -7.6335 7.6335 False
13 Brenneria Dickeya 3.0635 0.0 2.0515 4.0756 True
14 Brenneria Lonsdalea -0.62 0.8199 -1.8967 0.6566 False
15 Brenneria Musicola 1.6364 0.6604 -1.2214 4.4941 False
16 Brenneria Pectobacterium 4.7567 0.0 3.7819 5.7316 True
17 Brenneria Samsonia 0.6364 1.0 -4.8425 6.1152 False
18 Dickeya Lonsdalea -3.6836 0.0 -4.6262 -2.741 True
19 Dickeya Musicola -1.4272 0.755 -4.1521 1.2977 False
20 Dickeya Pectobacterium 1.6932 0.0 1.2362 2.1502 True
21 Dickeya Samsonia -2.4272 0.8734 -7.838 2.9836 False
22 Lonsdalea Musicola 2.2564 0.2329 -0.5775 5.0903 False
23 Lonsdalea Pectobacterium 5.3768 0.0 4.4743 6.2793 True
24 Lonsdalea Samsonia 1.2564 0.997 -4.2101 6.7229 False
25 Musicola Pectobacterium 3.1204 0.0116 0.4091 5.8317 True
26 Musicola Samsonia -1.0 0.9996 -7.0348 5.0348 False
27 Pectobacterium Samsonia -4.1204 0.2852 -9.5243 1.2836 False
In [72]:
# one-way ANOVA the phenotypes
f_oneway(
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Soft'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Hard'],
    sub_class_df['Frequency'][sub_class_df['Phenotype'] == 'Unknown'],
)
Out[72]:
F_onewayResult(statistic=185.10059849921967, pvalue=1.7220017140436788e-65)
In [73]:
# post hoc Turkey HDS test to determine between which genera there is a stat sig diff
cbm_class_phenot_turkey = pairwise_tukeyhsd(
    endog=sub_class_df['Frequency'],
    groups=sub_class_df['Phenotype'],
    alpha=0.05,   # cut off
)
cbm_class_turkey_pheno_df = pd.DataFrame(
    cbm_class_phenot_turkey._results_table[1:],
    columns=cbm_class_phenot_turkey._results_table.data[0]
)
cbm_class_turkey_pheno_df.to_csv("../results/cazy_classes/cbm_class_turkey_phenotype_results.csv")
cbm_class_turkey_pheno_df
Out[73]:
group1 group2 meandiff p-adj lower upper reject
0 Hard Soft 4.4937 0.0 3.9416 5.0457 True
1 Hard Unknown 1.92 0.1275 -0.4008 4.2408 False
2 Soft Unknown -2.5737 0.0215 -4.842 -0.3053 True

Explore AA CAZymes in Pectobacteriaceae¶

Very few genomes contained any AA CAZymes.

Identify the number of genomes were no AA CAZymes were found, additionally, find the maximum, minimum and mode number of AA CAZymes found across all 660 genomes.

In [74]:
# calc genomes with no AAs
no_aa_genomes = 0
for genus in class_size_dict['AA']:
    for genome in class_size_dict['AA'][genus]:
        no_aa_genomes+=1
print(f"{no_aa_genomes} genomes have no AAs")

aa_counts = [0] * no_aa_genomes
for genus in class_size_dict['AA']:
    for genome in class_size_dict['AA'][genus]:
        aa_counts.append(len(class_size_dict['AA'][genus][genome]['proteins']))
print(f"Max: {max(aa_counts)}\nMin: {min(aa_counts)}\nMode: {statistics.mode(aa_counts)}")
465 genomes have no AAs
Max: 2
Min: 0
Mode: 0

Count the number of genomes were 1 or 2 AA CAZymes were found.

In [75]:
# find genomes with 2 AAs
two_aa_genomes = {}
one_aa_genomes = {}

for genus in class_size_dict['AA']:
    for genome in class_size_dict['AA'][genus]:
        if len(class_size_dict['AA'][genus][genome]['proteins']) == 2:
            try:
                two_aa_genomes[genus].add(genome)
            except KeyError:
                two_aa_genomes[genus] = {genome}
                
        elif len(class_size_dict['AA'][genus][genome]['proteins']) == 1:
            try:
                one_aa_genomes[genus].add(genome)
            except KeyError:
                one_aa_genomes[genus] = {genome}

two_aa_genomes
Out[75]:
{'Pectobacterium': {'GCA_000738125.1',
  'GCA_000749915.1',
  'GCA_011378985.1',
  'GCA_011379045.1',
  'GCA_020971565.1',
  'GCA_024343355.1',
  'GCA_024722495.1',
  'GCA_028335745.1',
  'GCA_900195285.2',
  'GCA_900195295.2'}}
In [76]:
for genus in one_aa_genomes:
    print(f"{genus}: {len(one_aa_genomes[genus])}")
Pectobacterium: 361
Dickeya: 85
Brenneria: 8
Samsonia: 1

3. CAZy families¶

CAZy family frequency dataframe¶

Calculate the number of CAZymes per CAZy family presented in each genome, where the number of CAZymes is the number of unqiue protein accessions. This value may be greater than the number of CAZymes in the genome because a CAZyme may be annotated with multiple CAZy families.

In [77]:
# make output directory
# make output dir for results, will not delete data if dir already exists
make_output_directory(Path('../results/cazy_families/'), force=True, nodelete=True)
Output directory ../results/cazy_families exists, nodelete is True. Adding output to output directory.
In [78]:
fam_freq_df = build_fam_freq_df(fgp_df, ['Genus', 'Species'])
fam_freq_df
The dataset contains 117 CAZy families
Counting fam frequencies: 100%|███████████████████████████████████████████████████████████████████| 717/717 [00:45<00:00, 15.80it/s]
Out[78]:
Genome Genus Species AA10 AA3 CBM0 CBM13 CBM18 CBM3 CBM32 ... PL11 PL17 PL2 PL22 PL26 PL3 PL35 PL38 PL4 PL9
0 GCA_009931295.1 Pectobacterium odoriferum 0 1 0 1 0 1 1 ... 0 0 2 1 1 2 0 1 1 2
1 GCA_009874305.1 Dickeya solani 0 1 0 0 0 0 0 ... 0 0 1 1 1 2 0 0 1 3
2 GCA_016944275.1 Pectobacterium brasiliense 0 1 0 1 0 1 3 ... 0 0 2 1 0 2 0 1 1 2
3 GCA_003403135.1 Dickeya dianthicola 0 0 0 0 0 0 1 ... 0 0 1 1 1 2 0 1 2 3
4 GCA_922011735.1 Pectobacterium versatile 0 1 0 1 0 1 1 ... 0 0 2 1 1 2 0 0 1 2
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
712 GCA_022747695.1 Dickeya dianthicola 0 0 0 0 0 0 1 ... 0 0 1 1 1 2 0 0 2 3
713 GCA_003096475.1 Pectobacterium versatile 0 1 0 1 0 1 1 ... 0 0 2 1 1 2 0 0 1 2
714 GCA_016415585.1 Pectobacterium carotovorum 1 0 0 0 0 1 2 ... 0 0 2 1 0 2 0 1 1 2
715 GCA_023347555.1 Brenneria tiliae 0 0 0 0 0 0 0 ... 0 0 1 2 1 0 0 0 1 0
716 GCA_000406085.2 Dickeya sp. CSL RW240 0 0 0 0 0 0 1 ... 0 0 1 1 1 2 0 0 2 3

717 rows × 120 columns

In [79]:
fam_freq_df.to_csv("../results/cazy_families/cazy_fam_freqs.csv")

Clustermaps¶

Build clustermap of CAZy family frequencies, with additional row colours marking the genus classification of each genome (i.e. each row).

Prepare the dataframe of CAZy family frequencies¶

Index fam_freq_df so that each row name contains the genome, Genus and Species, so that the genomic accession, genus and species is included in the clustermap.

In [80]:
# index the taxonomy data and genome (ggs=genome_genus_species)
fam_freq_df_ggs = copy(fam_freq_df)  # so does not alter fam_freq_df
fam_freq_df_ggs = fam_freq_df_ggs.set_index(['Genome','Genus','Species'])
fam_freq_df_ggs.head(1)
Out[80]:
AA10 AA3 CBM0 CBM13 CBM18 CBM3 CBM32 CBM4 CBM48 CBM5 ... PL11 PL17 PL2 PL22 PL26 PL3 PL35 PL38 PL4 PL9
Genome Genus Species
GCA_009931295.1 Pectobacterium odoriferum 0 1 0 1 0 1 1 0 2 1 ... 0 0 2 1 1 2 0 1 1 2

1 rows × 117 columns

Colour scheme¶

Define a colour scheme to colour code the rows by, in this case by the genus of the species.

To do this, add a column containing the data to be used to colour code each row, e.g. a genus. This extra column is removed by build_row_colours().

Note: The dataframe that is parsed to build_row_colours()<\b> must be the dataframe that is used to generate a clustermap, otherwise Seaborn will not be able to map the row oclours correctly and no row colours will be produced.
In [81]:
# define a colour scheme to colour code rows by genus
fam_freq_df_ggs['Genus'] = list(fam_freq_df['Genus'])  # add column to use for colour scheme, is removed
fam_freq_genus_row_colours, fam_g_lut = build_row_colours(fam_freq_df_ggs, 'Genus', 'Set2')

Build a clustermap of CAZy family frequencies¶

Use the function build_family_clustermap() from cazomevolve to build clustermaps of the CAZy family frequencies, with different combinations of additional row colours. For example, the row colours could list the genus and/or species classification of each genome.

In [82]:
# make a figure that is full size, and all data is legible
print("""
A large version of a cluster map of CAZy family frequencies with each row representing a unique 
genome (and colour coded by the genus classification of the genome), and each column representing 
a unique CAZy family.

This full sized figure is generated for human readability. However, this figure is extremely large, and 
potentially too large for publication. Therefore, a smaller figure is generated below.
""")
large_fam_clustermap = build_family_clustermap(
    fam_freq_df_ggs,
    row_colours=fam_freq_genus_row_colours,
    fig_size=(40,120),
    file_path="../results/cazy_families/fam_freq_clustermap.svg",
    file_format='svg',
    lut=fam_g_lut,
    legend_title='Genus',
    dendrogram_ratio=(0.2,0.05),
    title_fontsize=28,
    legend_fontsize=24,
    cbar_pos=(0, 0.95, 0.05, 0.05),
)
A large version of a cluster map of CAZy family frequencies with each row representing a unique 
genome (and colour coded by the genus classification of the genome), and each column representing 
a unique CAZy family.

This full sized figure is generated for human readability. However, this figure is extremely large, and 
potentially too large for publication. Therefore, a smaller figure is generated below.

/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
In [83]:
# make a figure the optimal size to fit in a paper
build_family_clustermap(
    fam_freq_df_ggs,
    row_colours=fam_freq_genus_row_colours,
    fig_size=(20,35),
    file_path="../results/cazy_families/paper_fam_freq_clustermap.png",
    file_format='png',
    font_scale=0.5,
    lut=fam_g_lut,
    legend_title='Genus',
    dendrogram_ratio=(0.1,0.05),
    title_fontsize=18,
    legend_fontsize=16,
    cbar_pos=(0, 0.95, 0.05, 0.05),
)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
Out[83]:
<seaborn.matrix.ClusterGrid at 0x7f9d2c493190>

Add species classifications¶

Looking at the species names in the clustermap, there appears to be clustering of the genomes in a manner that correlates not only with their genus classificaiton but also their species classification. Therefore, add an additional row of row-colours, marking the species classification of each genome.

In [84]:
# define a colour scheme to colour code rows by SPECIES
fam_freq_df_ggs['Species'] = list(fam_freq_df['Species'])  # add column to use for colour scheme, is removed
fam_freq_species_row_colours, fam_s_lut = build_row_colours(fam_freq_df_ggs, 'Species', 'rainbow')
In [85]:
# make a figure the optimal size to fit in a paper
build_family_clustermap_multi_legend(
    df=fam_freq_df_ggs,
    row_colours=[fam_freq_genus_row_colours,fam_freq_species_row_colours],
    luts=[fam_g_lut, fam_s_lut],
    legend_titles=['Genus', 'Species'],
    bbox_to_anchors=[(0.2,1.045), (0.63,1.05)],
    legend_cols=[1,5],
    fig_size=(20,40),
    file_path="../results/cazy_families/paper_genus_species_fam_freq_clustermap.png",
    file_format='png',
    font_scale=1,
    dendrogram_ratio=(0.1,0.05),
    title_fontsize=18,
    legend_fontsize=16,
    cbar_pos=(0.01, 0.96, 0.1, 0.1),  #left, bottom, width, height
)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
Out[85]:
<seaborn.matrix.ClusterGrid at 0x7f9d2d64c710>
In [86]:
# make a figure the optimal size to fit in a paper
build_family_clustermap_multi_legend(
    df=fam_freq_df_ggs,
    row_colours=[fam_freq_genus_row_colours,fam_freq_species_row_colours],
    luts=[fam_g_lut, fam_s_lut],
    legend_titles=['Genus', 'Species'],
    bbox_to_anchors=[(0.2,1.04), (0.63,1.05)],
    legend_cols=[1,5],
    fig_size=(45,150),
    file_path="../results/cazy_families/paper_genus_species_fam_freq_clustermap.pdf",
    file_format='pdf',
    font_scale=1,
    dendrogram_ratio=(0.1,0.05),
    title_fontsize=14,
    legend_fontsize=12,
    cbar_pos=(0.01, 0.96, 0.1, 0.1),  #left, bottom, width, height
)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
Out[86]:
<seaborn.matrix.ClusterGrid at 0x7f9cff7e13d0>

Add phenotype classification to clustermap¶

The clustering of the genomes into their respective genera appears to also correlate with the soft versus hard plant tissue targeting phenotypes. Therefore, add an additional row colour that colour codes each row by the genomes preference for soft or hard plant tissues.

In [87]:
# define a colour scheme to colour code SOFT vs HARD plant tissue targeting genomes
phenotype_col = []
for ri in range(len(fam_freq_df_ggs)):
    if list(fam_freq_df['Genus'])[ri] in ['Pectobacterium', 'Dickeya', 'Musicola']:
        phenotype_col.append('Soft tissue targeting')
    else:
        phenotype_col.append('Hard tissue targeting')
fam_freq_df_ggs['Phenotype'] = phenotype_col
fam_freq_pheno_row_colours, fam_p_lut = build_row_colours(fam_freq_df_ggs, 'Phenotype', "Set1")
In [88]:
build_family_clustermap_multi_legend(
    df=fam_freq_df_ggs,
    row_colours=[fam_freq_pheno_row_colours, fam_freq_genus_row_colours],
    luts=[fam_p_lut, fam_g_lut],
    legend_titles=['Phenotype', 'Genus'],
    bbox_to_anchors=[(0.225,1.045), (0.63,1.04)],
    legend_cols=[1,5],
    fig_size=(27,41),
    file_path="../results/cazy_families/paper_pheno_genus_fam_freq_clustermap.png",
    file_format='png',
    font_scale=0.7,
    dendrogram_ratio=(0.1,0.05),
    title_fontsize=18,
    legend_fontsize=16,
    cbar_pos=(0.01, 0.96, 0.1, 0.1),  #left, bottom, width, height
)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
Out[88]:
<seaborn.matrix.ClusterGrid at 0x7f9d14438e90>

Remove genomes¶

In the clustermaps the genomes GCA_029023745.1 (Pectobacterium colocasium), GCA_000749925.1 and GCA_000749945.1 (Pectobacterium betavasulorum) contained under estimated representations of their respective CAZomes.

Six Pectobacterium genomes were not included within the main Pectobacterium subtree (dendrogram on the RHS of clustermap):

  • GCA_000749925.1 and GCA_000749845.1 (Pectobacterium betavasulorum)
  • GCA_000803215.1 (Pectobacterium fontis)
  • GCA_025946765.1 (Pectobacterium cacticida)
  • GCA_004137815.1 (Pectobacterium zantedeschiae)
  • GCA_029023745.1 (Pectobacterium colocasium)

Extracted from the paper:

The genomes appeared to contain fewer total CAZymes (inferred from the lower CAZy family frequencies) than other Pectobacterium genomes, inferring a potential underestimation of their CAZyme features. Genomes GCA_000749925.1, GCA_000749845.1, and GCA_000803215.1 were were listed with the assembly status 'contig' in NCBI (June 2021). Genomic assemblies with the assembly status of 'contig' may contain incomplete genomic sequences. Indeed, the reported CheckM (Parks et al 2015, Genome Res) analysis listed the GCA_000749925.1 and GCA_000749845.1 as missing 5% (100th percentile) of their genomes with 2.25-2.5% contamination, and GCA_000803215.1 as missing 10% (100th percentile). Furthermore, although listed with the assembly status 'complete genome', assembly GCA_025946765.1 was listed as missing 19% (100th percentile) of its genome by CheckM, and the scaffold GCA_004137815.1 was listed as missing 11% (33rd percentile) with 9% contamination. Therefore, the annotated proteomes potentially underestimates the number of features (including CAZymes) in the genomes, and were excluded from the downstream analyses. The genome GCA_029023745.1 was listed with the assembly status 'complete genome', but the NCBI Prokaryotic Genome Annotation Pipeline (PGAGP) output contained a suspiciously high number of frameshifted proteins (greater than 30%), inferring a potentially poor annotation of the genome that may have resulted in an underestimation of its CAZyme features. Therefore, this genome was also excluded from downstream analyses.

In [89]:
genomes_to_remove = [
    'GCA_000749925.1',
    'GCA_000749845.1',
    'GCA_000803215.1',
    'GCA_025946765.1',
    'GCA_004137815.1',
    'GCA_029023745.1',
]
fam_freq_filtered_df = fam_freq_df[~fam_freq_df['Genome'].isin(genomes_to_remove)]
print(f"Original df length: {len(fam_freq_df)}\nLength after removing genome: {len(fam_freq_filtered_df)}")
Original df length: 717
Length after removing genome: 711

Replot the clustermap¶

Replot the clustermap, exlucding the removed genomes.

In [90]:
fam_freq_filtered_df_ggs = fam_freq_filtered_df.set_index(['Genome', 'Genus', 'Species'])
In [91]:
# make a figure the optimal size to fit in a paper
build_family_clustermap(
    fam_freq_df_ggs,
    row_colours=fam_freq_genus_row_colours,
    fig_size=(20,70),
    file_path="../results/cazy_families/paper_fam_freq_clustermap_FILTERED.svg",
    file_format='svg',
    font_scale=0.5,
    lut=fam_g_lut,
    legend_title='Genus',
    dendrogram_ratio=(0.1,0.05),
    title_fontsize=18,
    legend_fontsize=16,
    cbar_pos=(0, 0.95, 0.05, 0.05),
)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
Out[91]:
<seaborn.matrix.ClusterGrid at 0x7f9cf9127990>

Genus specific CAZy families¶

Identify CAZy families that are only present in one group, e.g. one Genus, using the function get_group_specific_fams from cazomevolve.

Specifically, get_group_specific_fams returns two dicts:

  1. Group specific families: {group: {only unique fams}}
  2. All families per group: {group: {all fams}}
In [92]:
all_families = list(fam_freq_df.columns)[3:]
# dict {group: {only unique fams}} and dict {group: {all fams}}
unique_grp_fams, group_fams = get_group_specific_fams(fam_freq_filtered_df, 'Genus', all_families)
unique_grp_fams
Identifying fams in each Genus: 100%|█████████████████████████████████████████████████████████████| 711/711 [00:09<00:00, 72.41it/s]
Identifying Genus specific fams: 100%|█████████████████████████████████████████████████████████████| 8/8 [00:00<00:00, 12363.46it/s]
Out[92]:
{'Pectobacterium': {'AA10',
  'CBM13',
  'GH121',
  'GH146',
  'GH18',
  'GT101',
  'GT102',
  'GT11',
  'GT111',
  'GT14',
  'GT24',
  'GT52',
  'PL11'},
 'Dickeya': {'CBM4', 'CE2', 'GH113', 'GH148', 'GH25', 'GH91', 'GT97', 'PL10'},
 'Brenneria': {'GH106', 'GT21', 'PL17'},
 'Acerihabitans': {'GH127', 'GH15'}}

Identify phenotype specific CAZy families¶

Identify families that are only found in hard plant tissue targeting genomes, and those families only found in soft plant tissue targeting species.

In [93]:
hard_soft_fams_dict = {'hard': set(), 'soft': set(), 'unknown': set()}

for ri in tqdm(range(len(fam_freq_filtered_df)), desc="Identifying Soft and Hard plant tissue targeting families"):
    genus = fam_freq_filtered_df.iloc[ri]['Genus']
    
    if genus in ['Pectobacterium','Dickeya']:
        grp = 'soft'
    elif genus == 'Musicola':
        grp = 'unknown'
    else:
        grp = 'hard'
    
    for fam in fam_freq_filtered_df.columns[3:]:
        if fam_freq_filtered_df.iloc[ri][fam] >= 1:
            hard_soft_fams_dict[grp].add(fam)

unique_hard_fams = hard_soft_fams_dict['hard'].difference(hard_soft_fams_dict['soft'])
unique_soft_fams = hard_soft_fams_dict['soft'].difference(hard_soft_fams_dict['hard'])

print("Hard plant tissue targeting specific families:")
for fam in unique_hard_fams:
    print(fam)
print("Soft plant tissue targeting specific families:")
for fam in unique_soft_fams:
    print(fam)
Identifying Soft and Hard plant tissue targeting families:   0%|          | 0/711 [00:00<?, ?it/s]
Hard plant tissue targeting specific families:
GH140
GH15
PL17
GH127
GT21
GH37
GH51
GH39
GH106
Soft plant tissue targeting specific families:
GT24
GH146
CBM4
GH18
GT25
CBM0
GT14
GT111
PL11
GH113
GH91
CBM91
PL10
PL35
GT101
GT52
CBM13
GH16
GH148
GT11
CE2
AA10
GH25
GH121
GT97
GT102
In [94]:
# find the number of soft plant tissue targeting genomes that contain GH68
# find unique counts - if all 1 or 0 then can use sum to get genome count
print(set(fam_freq_filtered_df[fam_freq_filtered_df['Genus'].isin(['Pectobacterium','Dickeya'])]['GH68']))
# get num of genomes
sum(fam_freq_filtered_df[fam_freq_filtered_df['Genus'].isin(['Pectobacterium','Dickeya'])]['GH68'])
{0, 1}
Out[94]:
4

Compile all this data on genus and phenotype specific CAZy families into a single dataframe that will be similar to one presented in a paper/report.

In [95]:
# convert into df
unique_grp_data = []

unique_grp_fams['Hard tissue'] = unique_hard_fams
unique_grp_fams['Soft tissue'] = unique_soft_fams

for genus in unique_grp_fams:
    new_data = [genus]
    for cazy_class in ['GH', 'GT', 'CE', 'PL', 'AA', 'CBM']:
        added = False
        class_data = []
        for fam in unique_grp_fams[genus]:
            if fam.startswith(cazy_class):
                class_data.append(fam)
                added = True
        if added is False:
            class_data.append("")
        class_data.sort()
        new_data.append(", ".join(class_data))
            
    unique_grp_data.append(new_data)
    
unique_grp_df = pd.DataFrame(unique_grp_data, columns=['Genus', 'GH', 'GT', 'CE', 'PL', 'AA', 'CBM'])
unique_grp_df.to_csv("../results/cazy_families/unique_grp_fams.tsv", sep='\t')
unique_grp_df
Out[95]:
Genus GH GT CE PL AA CBM
0 Pectobacterium GH121, GH146, GH18 GT101, GT102, GT11, GT111, GT14, GT24, GT52 PL11 AA10 CBM13
1 Dickeya GH113, GH148, GH25, GH91 GT97 CE2 PL10 CBM4
2 Brenneria GH106 GT21 PL17
3 Acerihabitans GH127, GH15
4 Hard tissue GH106, GH127, GH140, GH15, GH37, GH39, GH51 GT21 PL17
5 Soft tissue GH113, GH121, GH146, GH148, GH16, GH18, GH25, ... GT101, GT102, GT11, GT111, GT14, GT24, GT25, G... CE2 PL10, PL11, PL35 AA10 CBM0, CBM13, CBM4, CBM91

Pectobacterium and Dickeya genus-specific families¶

Pectobacterium and Dickeya share a similar plant host range but show notable diversity in the compositions of the CAZyme-complements. drop all genomes not from Pectobacterium and Dickeya from the fam_freq_df dataframe, and repeat the analysis to identify genus specific CAZy families.

In [96]:
all_families = list(fam_freq_filtered_df.columns)[3:]
pd_fam_freq_df_filtered = fam_freq_filtered_df[fam_freq_filtered_df['Genus'].isin(
    ['Pectobacterium', 'Dickeya']
)]
# dict {group: {only unique fams}} and dict {group: {all fams}}
pd_unique_grp_fams, pd_group_fams = get_group_specific_fams(pd_fam_freq_df_filtered, 'Genus', all_families)
pd_unique_grp_fams
Identifying fams in each Genus: 100%|█████████████████████████████████████████████████████████████| 632/632 [00:08<00:00, 72.62it/s]
Identifying Genus specific fams: 100%|█████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 11244.78it/s]
Out[96]:
{'Pectobacterium': {'AA10',
  'CBM13',
  'CBM18',
  'CBM3',
  'CBM67',
  'GH108',
  'GH12',
  'GH121',
  'GH146',
  'GH153',
  'GH154',
  'GH18',
  'GH38',
  'GH65',
  'GH68',
  'GT101',
  'GT102',
  'GT11',
  'GT111',
  'GT14',
  'GT20',
  'GT24',
  'GT32',
  'GT52',
  'GT73',
  'PL11'},
 'Dickeya': {'CBM4',
  'CE2',
  'GH113',
  'GH148',
  'GH25',
  'GH26',
  'GH91',
  'GT97',
  'PL0',
  'PL10'}}

Rare faction curves¶

To estimate if the CAZome has been exhausted, rare faction curves where generated for all Pectobacteriaceae genoems, and for each genus represented by multiple genomes:

  • Pectobacterium
  • Dickeya
  • Lonsdalea
  • Brenneria
  • Musicola
In [97]:
def plot_rarefaction_curve(
    df,
    all_families,
    num_of_runs=100,
):
    """Build rare faction curve
    
    :param df: pandas df, cazy fam freq df
    :param all_families: list of CAZy families to be analysed
    :param num_of_runs: number of times to resample dataset
    
    Return 
    * rare faction plot
    * df of the number of families added with new additional genome
    * df of number of families in total fam pool with each additional genome
    """
    genomes = list(df['Genome'])
    
    run_outputs_addings = {}  # num of run: [num of new fams found ADDED a new genome to the pool]
    run_outputs_counts = {}  # num of run: [num of unique fams in total fam pool after adding a new genome to the pool]

    for run in tqdm(range(num_of_runs), desc="Counting added families"):
        random.shuffle(genomes)
        fams_to_parse = set(copy(all_families))

        num_added_families = [0]  # one item for each genome, int, num of new families added
        family_pool_size = [0]  # number of unqiue fams seen after adding each genome to the pool
        families = set()  # to track which families have been seen

        for genome in genomes:
            fams_added = 0  # num of fams added to total pool for this genome

            genome_row = df[df['Genome'] == genome]
            for fam in fams_to_parse:
                if genome_row[fam].values[0] > 0:  # fam in genome
                    if fam not in families:
                        fams_added += 1
                        families.add(fam)

            # parsed all families
            
            # record number of new families found in this genome
            num_added_families.append(fams_added)
            
            # record number of unique fams seen after analysing genomes so far
            family_pool_size.append(len(families))
            
            # find which families are in fams_to_parse but are not in families
            # do not reparse fams that have already been found
            fams_to_parse = fams_to_parse.difference(families)

        # parsed all genomes
        run_outputs_addings[run] = num_added_families
        run_outputs_counts[run] = family_pool_size

    run_outputs_df_addings = pd.DataFrame(run_outputs_addings)    
    run_outputs_df_counts = pd.DataFrame(run_outputs_counts)
    
    # calculate the averages
    run_count_avg = []  # avg num of fams after adding each genome
    genomes = list(range(1, len(run_outputs_df_counts)+1))
    for i in range(len(run_outputs_df_counts)):
        run_count_avg.append(np.mean(run_outputs_df_counts.iloc[i]))
        genomes.append
    run_avg_df = pd.DataFrame(
        {
            'Number of CAZy families': run_count_avg,
            'Number of genomes': genomes,
        }
    )
    
    # Generate plot
    # subplot 1 = all runs
    # subplot 2 = averages of all runs
    fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 7.5))

    #add DataFrames to subplots
    run_outputs_df_counts.plot(
        ax=axes[0],
        xlabel='Number of genomes',
        ylabel='Number of CAZy families',
        legend=False,
    );
    
    run_avg_df.plot(
        ax=axes[1],
        x='Number of genomes',
        y='Number of CAZy families',
        legend=False,
    );
    
    # raref_curve = sns.lineplot(
    #     data=run_outputs_df_counts,
    #     legend=False,
    # );    #     linestyle='solid',

    # plt.xlabel('Number of genomes');
    # plt.ylabel('Number of CAZy families');
    
    return fig, run_outputs_df_addings, run_outputs_df_counts
In [98]:
all_families = list(fam_freq_df.columns)[3:]
# calculate rare factions for all of pectobacteriaceae
pecto_rarefact_plt, pecto_runs_addings, pecto_runs_counts = plot_rarefaction_curve(
    fam_freq_filtered_df,
    all_families,
)
Counting added families:   0%|          | 0/100 [00:00<?, ?it/s]
In [99]:
# calculate rare factions for Pectobacterium
pectobact_rarefact_plt, pectobact_runs_addings, pectobact_runs_counts = plot_rarefaction_curve(
    fam_freq_filtered_df[fam_freq_filtered_df['Genus']=='Pectobacterium'],
    all_families,
)
Counting added families:   0%|          | 0/100 [00:00<?, ?it/s]
In [100]:
# calculate rare factions for Dickeya
dic_rarefact_plt, dic_runs_addings, dic_runs_counts = plot_rarefaction_curve(
    fam_freq_filtered_df[fam_freq_filtered_df['Genus']=='Dickeya'],
    all_families,
)
Counting added families:   0%|          | 0/100 [00:00<?, ?it/s]
In [101]:
# calculate rare factions for Musicola
mus_rarefact_plt, mus_runs_addings, mus_runs_counts = plot_rarefaction_curve(
    fam_freq_filtered_df[fam_freq_filtered_df['Genus']=='Musicola'],
    all_families,
)
Counting added families:   0%|          | 0/100 [00:00<?, ?it/s]
In [102]:
# calculate rare factions for Brenneria
ben_rarefact_plt, ben_runs_addings, ben_runs_counts = plot_rarefaction_curve(
    fam_freq_filtered_df[fam_freq_filtered_df['Genus']=='Brenneria'],
    all_families,
)
Counting added families:   0%|          | 0/100 [00:00<?, ?it/s]
In [103]:
# calculate rare factions for Lonsdalea
lon_rarefact_plt, lon_runs_addings, lon_runs_counts = plot_rarefaction_curve(
    fam_freq_filtered_df[fam_freq_filtered_df['Genus']=='Lonsdalea'],
    all_families,
)
Counting added families:   0%|          | 0/100 [00:00<?, ?it/s]

Plot all the averages (i.e. curves representing the average number of families in total family pool after randomly adding a new genome to the dataset) on a single plot.

In [104]:
def calc_run_avg(run_outputs_df_counts):
    """Calc average num of families in total fam pool after adding a genome to the dataset"""
    run_count_avg = []  # avg num of fams after adding each genome
    genomes = list(range(1, len(run_outputs_df_counts)+1))
    
    for i in range(len(run_outputs_df_counts)):
        run_count_avg.append(np.mean(run_outputs_df_counts.iloc[i]))
        genomes.append
    run_avg_df = pd.DataFrame(
        {
            'Number of CAZy families': run_count_avg,
            'Number of genomes': genomes,
        }
    )
    
    return run_avg_df
In [105]:
# calculate average num of fams in total fam pool after adding a new genome to the data set
pecto_run_avg = calc_run_avg(pecto_runs_counts)
pectobact_run_avg = calc_run_avg(pectobact_runs_counts)
dic_run_avg = calc_run_avg(dic_runs_counts)
mus_run_avg = calc_run_avg(mus_runs_counts)
ben_run_avg = calc_run_avg(ben_runs_counts)
lon_run_avg = calc_run_avg(lon_runs_counts)

# build into a single df
df_len = len(pecto_run_avg)  # len all cols need to be

run_avg_data = {
    'Pectobacteriaceae': pecto_run_avg['Number of CAZy families'],
    'Pectobacterium': list(pectobact_run_avg['Number of CAZy families']) + (
        [None] * (df_len - len(pectobact_run_avg['Number of CAZy families']))
    ),
    'Dickeya': list(dic_run_avg['Number of CAZy families']) + (
        [None] * (df_len - len(dic_run_avg['Number of CAZy families']))
    ),
    'Musicola': list(mus_run_avg['Number of CAZy families']) + (
        [None] * (df_len - len(mus_run_avg['Number of CAZy families']))
    ),
    'Brenneria': list(ben_run_avg['Number of CAZy families']) + (
        [None] * (df_len - len(ben_run_avg['Number of CAZy families']))
    ),
    'Lonsdalea': list(lon_run_avg['Number of CAZy families']) + (
        [None] * (df_len - len(lon_run_avg['Number of CAZy families']))
    ),
}

run_avg_df = pd.DataFrame(run_avg_data)
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(10, 5))
run_avg_df.plot(ax=axes);

4. The Core CAZome¶

Identify CAzy families that are present in every genome in the dataset using the identify_core_cazome() function from cazomevolve. These families form the 'core CAZome'.

The function takes one positional argument, a dataframe of CAZy family frequencies (with only CAZy families included in the columns, i.e no taxonomy columns).

Warning: The CAZy family frequency dataframe provided to <\b>identify_core_cazome()<\b> must contain no columns listing taxonomic data. Each column must represent a unique CAZy family.
In [106]:
# make output directory
# make output dir for results, will not delete data if dir already exists
make_output_directory(Path('../results/core_cazome/'), force=True, nodelete=True)
Output directory ../results/core_cazome exists, nodelete is True. Adding output to output directory.
In [107]:
fam_freq_filtered_df_ggs = fam_freq_filtered_df.set_index(['Genome', 'Genus', 'Species'])
In [108]:
core_cazome = identify_core_cazome(fam_freq_filtered_df_ggs)

core_cazome = list(core_cazome)
core_cazome.sort()

print(f"Total families: {len(all_families)}")
print("The core CAZy families are:")
for fam in core_cazome:
    print('-', fam)
Identifying core CAZome: 100%|██████████████████████████████████████████████████████████████████| 117/117 [00:00<00:00, 9004.62it/s]
Total families: 117
The core CAZy families are:
- CBM5
- CBM50
- GH23
- GH3
- GT2
- GT51
- GT9

The boxplot shows the frequency of each CAZy family across all genomes in the dataframe. We can also break down this data by genus, and build a dataframe of Family, Genus (or tax rank of choice), genome, and frequency.

This dataframe can then be used to build a second dataframe of:

  • Family
  • Tax rank
  • Mean frequency
  • SD frequency Which can be presented as is in a report, or imported into RawGraphs to build a matrix plot (aka a proporitonal area plot).
In [109]:
# filter the famil freq df to include only those families in the core CAZome
core_cazome_df = fam_freq_filtered_df_ggs[core_cazome]
plot_fam_boxplot(core_cazome_df, font_scale=0.8, fig_size=(12,6))

The boxplot shows the frequency of each core CAZy family across all Pectobacteriaceae. To break down the frequency by genus, build a dataframe with the mean (and SD) of frequency of each family in the core CAZome per genus. This dataframe can then be used to plot a proportional area plot of the mean frequency of each CAZy family per genus, for exampling using RawGraphs.

In [110]:
core_cazome_df_genus = copy(core_cazome_df)  # to ensure core_cazome_df is not altereted
core_cazome_df_genus = add_tax_column_from_row_index(core_cazome_df_genus, 'Genus', 1)
core_cazome_df_genus.head()
Out[110]:
CBM5 CBM50 GH23 GH3 GT2 GT51 GT9 Genus
Genome Genus Species
GCA_009931295.1 Pectobacterium odoriferum 1 5 10 3 7 3 3 Pectobacterium
GCA_009874305.1 Dickeya solani 2 6 5 3 11 3 4 Dickeya
GCA_016944275.1 Pectobacterium brasiliense 1 6 10 2 9 3 4 Pectobacterium
GCA_003403135.1 Dickeya dianthicola 2 6 9 3 11 3 4 Dickeya
GCA_922011735.1 Pectobacterium versatile 1 6 5 2 8 3 3 Pectobacterium
In [111]:
core_cazome_fggf_df, core_cazome_mean_freq_df = build_fam_mean_freq_df(
    core_cazome_df_genus,
    'Genus',
    round_by=2,
)

# add rows showing the means across all pectobacteriaceae
all_pecto_core_fam_data = []
for fam in core_cazome_df_genus.columns:
    try:
        mean_freq = np.mean(core_cazome_df_genus[fam]).round(2)
        sd_freq = np.std(core_cazome_df_genus[fam]).round(2)
        all_pecto_core_fam_data.append([fam, 'Pectobacteriaceae', mean_freq, sd_freq])
    except TypeError: # tax column
        continue
    
temp_df = pd.DataFrame(all_pecto_core_fam_data, columns=['Family','Genus','MeanFreq','SdFreq'])
core_cazome_mean_freq_df = pd.concat([core_cazome_mean_freq_df, temp_df])

core_cazome_mean_freq_df.to_csv("../results/core_cazome/core_cazome_freqs.csv")

core_cazome_mean_freq_df
Building [fam, grp, genome, freq] df: 100%|█████████████████████████████████████████████████████| 711/711 [00:00<00:00, 5870.25it/s]
Building [Fam, grp, mean freq, sd freq] df: 100%|████████████████████████████████████████████████████| 8/8 [00:00<00:00, 118.05it/s]
Out[111]:
Family Genus MeanFreq SdFreq
0 CBM5 Lonsdalea 1.00 0.00
1 CBM50 Lonsdalea 5.79 0.52
2 GH23 Lonsdalea 5.21 1.04
3 GH3 Lonsdalea 1.97 0.28
4 GT2 Lonsdalea 7.03 0.86
... ... ... ... ...
2 GH23 Pectobacteriaceae 6.49 1.55
3 GH3 Pectobacteriaceae 2.49 0.60
4 GT2 Pectobacteriaceae 8.15 2.10
5 GT51 Pectobacteriaceae 3.08 0.37
6 GT9 Pectobacteriaceae 3.70 0.56

63 rows × 4 columns

Genus specific core CAZomes¶

As well as looking at the core CAZome across all Pectobacteriaceae, we can identify the core CAZome of each genus. This is still done using the identify_core_cazome() function from cazomevolve, however, we filter the dataframe each time to retain only rows with data for the genera of interest.

These data (listing the genus specific core CAZomes) is used to aupsetplot to highlight the differences and similarities between the core CAZomes.

Note: Only generate that are represented by more than one genome are included in this analysis of genus specific core CAZomes. Otherwise, for genera with only one genome representative, all families in that one genome will be listed in the core CAZome.
In [112]:
genera_of_interest = ['Pectobacterium', 'Dickeya', 'Musicola', 'Brenneria', 'Lonsdalea']
all_families = fam_freq_filtered_df_ggs.columns

core_cazomes = {}  # {genus: {fams}}
for genus in genera_of_interest:
    filtered_df = fam_freq_filtered_df[fam_freq_filtered_df['Genus'] == genus]
    temp_core_cazome = identify_core_cazome(filtered_df[all_families])
    temp_core_cazome = list(temp_core_cazome)
    temp_core_cazome.sort()
    core_cazomes[genus] = {'fams': temp_core_cazome, 'freqs': {len(filtered_df)}}
    
core_cazomes
Identifying core CAZome: 100%|██████████████████████████████████████████████████████████████████| 117/117 [00:00<00:00, 7996.18it/s]
Identifying core CAZome: 100%|█████████████████████████████████████████████████████████████████| 117/117 [00:00<00:00, 17363.72it/s]
Identifying core CAZome: 100%|█████████████████████████████████████████████████████████████████| 117/117 [00:00<00:00, 29897.26it/s]
Identifying core CAZome: 100%|█████████████████████████████████████████████████████████████████| 117/117 [00:00<00:00, 25178.74it/s]
Identifying core CAZome: 100%|█████████████████████████████████████████████████████████████████| 117/117 [00:00<00:00, 29642.62it/s]
Out[112]:
{'Pectobacterium': {'fams': ['CBM5',
   'CBM50',
   'GH1',
   'GH103',
   'GH23',
   'GH28',
   'GH3',
   'GH43',
   'GT2',
   'GT51',
   'GT9',
   'PL1',
   'PL2',
   'PL22',
   'PL3',
   'PL9'],
  'freqs': {426}},
 'Dickeya': {'fams': ['CBM48',
   'CBM5',
   'CBM50',
   'CE4',
   'CE8',
   'GH1',
   'GH103',
   'GH105',
   'GH13',
   'GH23',
   'GH28',
   'GH3',
   'GH33',
   'GH73',
   'GH77',
   'GH8',
   'GT1',
   'GT19',
   'GT2',
   'GT28',
   'GT35',
   'GT4',
   'GT5',
   'GT51',
   'GT9',
   'PL1',
   'PL9'],
  'freqs': {206}},
 'Musicola': {'fams': ['CBM48',
   'CBM5',
   'CBM50',
   'CE1',
   'CE11',
   'CE12',
   'CE4',
   'CE8',
   'CE9',
   'GH1',
   'GH102',
   'GH103',
   'GH104',
   'GH105',
   'GH13',
   'GH19',
   'GH2',
   'GH23',
   'GH28',
   'GH3',
   'GH30',
   'GH31',
   'GH32',
   'GH33',
   'GH38',
   'GH5',
   'GH73',
   'GH77',
   'GH8',
   'GT0',
   'GT1',
   'GT19',
   'GT2',
   'GT26',
   'GT28',
   'GT30',
   'GT35',
   'GT4',
   'GT5',
   'GT51',
   'GT56',
   'GT81',
   'GT83',
   'GT9',
   'PL1',
   'PL2',
   'PL22',
   'PL9'],
  'freqs': {4}},
 'Brenneria': {'fams': ['CBM5',
   'CBM50',
   'CE11',
   'CE12',
   'CE9',
   'GH1',
   'GH102',
   'GH103',
   'GH13',
   'GH23',
   'GH28',
   'GH3',
   'GH32',
   'GH4',
   'GH68',
   'GH73',
   'GH94',
   'GT0',
   'GT19',
   'GT2',
   'GT26',
   'GT28',
   'GT30',
   'GT35',
   'GT4',
   'GT5',
   'GT51',
   'GT56',
   'GT8',
   'GT81',
   'GT84',
   'GT9'],
  'freqs': {33}},
 'Lonsdalea': {'fams': ['CBM32',
   'CBM5',
   'CBM50',
   'CE11',
   'CE4',
   'GH19',
   'GH23',
   'GH3',
   'GH32',
   'GH37',
   'GH68',
   'GH77',
   'GH8',
   'GT19',
   'GT2',
   'GT20',
   'GT26',
   'GT28',
   'GT4',
   'GT51',
   'GT56',
   'GT9'],
  'freqs': {39}}}
In [113]:
core_cazome_upsetplot_membership = []
core_cazome_upsetplot_membership = add_to_upsetplot_membership(
    core_cazome_upsetplot_membership,
    core_cazomes,
)
len(core_cazome_upsetplot_membership)
Out[113]:
708
In [114]:
core_cazome_upsetplot = build_upsetplot(
    core_cazome_upsetplot_membership,
    sort_by='input',
    file_path='../results/core_cazome/genera_core_cazome.svg',
)

Phenotype specific core CAZomes¶

Again by filtering the rows in the dataframe of CAZyme family frequencies, we can identify a core CAZome in any custom subset of genomes. This includes identifing the core CAZomes in soft and hard plant tissue targeting Pectobacteriaceae CAZomes.

In [115]:
soft_genera = ['Pectobacterium', 'Dickeya', 'Musicola']
hard_genera = ['Brenneria', 'Lonsdalea', 'Samsonia', 'Affinibrenneria', 'Acerihabitans']
grps = [[soft_genera, 'Soft tissue targeting'], [hard_genera, 'Hard tissue targeting']]

all_families = fam_freq_filtered_df_ggs.columns

soft_hard_core_cazomes = {}  # {grp: {fams}}
for grp in tqdm(grps):
    # gather all rows containing the genera of interest
    filtered_df = fam_freq_filtered_df[fam_freq_filtered_df['Genus'].isin(grp[0])]
    temp_core_cazome = identify_core_cazome(filtered_df[all_families])
    temp_core_cazome = list(temp_core_cazome)
    temp_core_cazome.sort()
    try:
        soft_hard_core_cazomes[grp[1]]
    except KeyError:
        soft_hard_core_cazomes[grp[1]] = {'fams': set(), 'freqs': [0]}

    soft_hard_core_cazomes[grp[1]]['fams'] = soft_hard_core_cazomes[grp[1]]['fams'].union(
        set(temp_core_cazome)
    )
    soft_hard_core_cazomes[grp[1]]['freqs'][0] += len(filtered_df)
    
soft_hard_core_cazomes
  0%|          | 0/2 [00:00<?, ?it/s]
Identifying core CAZome: 100%|█████████████████████████████████████████████████████████████████| 117/117 [00:00<00:00, 10814.83it/s]

Identifying core CAZome: 100%|█████████████████████████████████████████████████████████████████| 117/117 [00:00<00:00, 27753.28it/s]
Out[115]:
{'Soft tissue targeting': {'fams': {'CBM5',
   'CBM50',
   'GH1',
   'GH103',
   'GH23',
   'GH28',
   'GH3',
   'GT2',
   'GT51',
   'GT9',
   'PL1',
   'PL9'},
  'freqs': [636]},
 'Hard tissue targeting': {'fams': {'CBM5',
   'CBM50',
   'CE11',
   'GH23',
   'GH3',
   'GT19',
   'GT2',
   'GT26',
   'GT28',
   'GT4',
   'GT51',
   'GT56',
   'GT9'},
  'freqs': [75]}}
In [116]:
soft_hard_core_cazomes.update(core_cazomes)
In [117]:
core_cazome_upsetplot_membership = []
core_cazome_upsetplot_membership = add_to_upsetplot_membership(
    core_cazome_upsetplot_membership,
    soft_hard_core_cazomes,
)
len(core_cazome_upsetplot_membership)
Out[117]:
1419
In [118]:
core_cazome_upsetplot = build_upsetplot(
    core_cazome_upsetplot_membership,
    file_path='../results/core_cazome/genera_soft_hard_core_cazome.svg',
)

5. Families that always occur together¶

We can use cazomevolve to identify CAZy families that are always present in a genome together, although each group of always co-occurring CAZy families may not be present in every genomes.

Note: This approach is extremely stringent with its definition. It does not not tolerate one CAZy family ever appearing without the other family in the same genome.
In [119]:
# make output dir for results, will not delete data if dir already exists
make_output_directory(Path('../results/cooccurring_families/'), force=True, nodelete=True)

# reminder of the structure of the df
fam_freq_filtered_df.head(1)
Output directory ../results/cooccurring_families exists, nodelete is True. Adding output to output directory.
Out[119]:
Genome Genus Species AA10 AA3 CBM0 CBM13 CBM18 CBM3 CBM32 ... PL11 PL17 PL2 PL22 PL26 PL3 PL35 PL38 PL4 PL9
0 GCA_009931295.1 Pectobacterium odoriferum 0 1 0 1 0 1 1 ... 0 0 2 1 1 2 0 1 1 2

1 rows × 120 columns

Using a correlation matrix¶

There are two approaches are implemented by cazomevolve to idenitfy CAZy families that always co-occur together. The first generates a correlation matrix.

CAZy families that always appear together can be identified by generating a correlation matrix using the Python package pandas, CAZy families that are always present together will have a correlation matrix of 1.

This can be done using the identify_cooccurring_fams_corrM() function. CAZy families that are always present in the genome (i.e. the core CAZome), or are absent from all genomes will be calulcated to have a correlation score of nan.

Note: In order to plot the correlation matrix, the fill_value key word for identify_cooccurring_fams_corrM() can be used to replace all nan values with an interger.

identify_cooccurring_fams_corrM() returns:

  • a set of tuples, one tuple per group of always co-occurring CAZy families
  • a correlation matrix
In [120]:
all_families = list(fam_freq_filtered_df.columns[3:])

cooccurring_families, fam_corr_M_filled = identify_cooccurring_fams_corrM(
    fam_freq_filtered_df,
    all_families,
    core_cazome=[],
    corrM_path="../results/cooccurring_families/fam_corr_M_filled.csv",
    fill_value=2,
)
Building binary fam freq df: 100%|██████████████████████████████████████████████████████████████| 117/117 [00:00<00:00, 2514.93it/s]
Delete absent families: 100%|███████████████████████████████████████████████████████████████████| 117/117 [00:00<00:00, 7081.50it/s]
Identifying always co-occurring families: 100%|█████████████████████████████████████████████████| 117/117 [00:00<00:00, 3121.93it/s]
In [121]:
cooccurring_families
Out[121]:
{('CBM4', 'GH148'), ('GH121', 'GH146'), ('GH127', 'GH15'), ('GH94', 'GT84')}

Generate a clustermap of the correlation matrix.

In [122]:
sns.clustermap(
    fam_corr_M_filled,
    cmap=sns.cubehelix_palette(rot=0, dark=2, light=0, reverse=True, as_cmap=True),
)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/matrix.py:560: UserWarning: Clustering large matrix with scipy. Installing `fastcluster` may give better performance.
  warnings.warn(msg)
Out[122]:
<seaborn.matrix.ClusterGrid at 0x7f9cf91ffad0>

An iterative approach to identify co-occurring families¶

The second method implemented by cazomevolve to identify CAZy families that always co-occur together is an iterative approach:

Iterate through the dataframe of CAZy family frequencies in Pectobacteriaceae (fam_freq_df_filtered) and identify the groups of always co-occurring CAZy families (i.e. those families that are always present together) and count the number of genomes in which the families are present together.

This is done using the cazomevolve function calc_cooccuring_fam_freqs(), which returns a dictionary of groups of co-occurring CAZy families. The function takes as input:

  1. The dataframe of CAZy family frequencies (it can include taxonomy information in columns)
  2. A list of the CAZy families to analyse
  3. (Optional) whether to include or exclude the core CAZome from the list of always co-occurring CAZy families.
In [123]:
cooccurring_fams_dict = calc_cooccuring_fam_freqs(
    fam_freq_filtered_df,
    list(all_families),
    exclude_core_cazome=False,
)
cooccurring_fams_dict
Identifying pairs of co-occurring families: 100%|█████████████████████████████████████████████████| 117/117 [00:01<00:00, 93.38it/s]
Combining pairs of co-occurring families: 100%|█████████████████████████████████████████████████| 25/25 [00:00<00:00, 108323.97it/s]
Out[123]:
{0: {'fams': {'CBM4', 'GH148'}, 'freqs': {8}},
 1: {'fams': {'CBM5', 'CBM50', 'GH23', 'GH3', 'GT2', 'GT51', 'GT9'},
  'freqs': {711}},
 2: {'fams': {'GH121', 'GH146'}, 'freqs': {1}},
 3: {'fams': {'GH127', 'GH15'}, 'freqs': {1}},
 4: {'fams': {'GH94', 'GT84'}, 'freqs': {309}}}

Genus specific groups of always co-occurring CAZy families¶

Similar to above when exploring core CAZomes, we can filiter the dataframe of CAZy family frequencies and run the analysis to identify always co-occurring CAZy families on custom subsets of genomes.

In this instance we reran the analysis for each genus in Pectobacteriaceae to identify genus specific groups of always co-occurring CAZy families.

Note: We limited the analysis to only those genera represented by more than one genome. Looking at genera where only one genome was analysed, all families in the genome will be listed as always co-occurring.
In [124]:
genera_cooccuring_fams = {}  # {genus: cooccurring_fams_dict}

for genus in tqdm(
    ['Pectobacterium', 'Dickeya', 'Musicola', 'Lonsdalea', 'Brenneria'],
    desc="Identifying genus specific co-occurring fams",
):
    genus_fam_freq_df = fam_freq_filtered_df[fam_freq_filtered_df['Genus'] == genus]
    genus_cooccurring_fams_dict = calc_cooccuring_fam_freqs(
        genus_fam_freq_df,
        list(all_families),
        exclude_core_cazome=False,
    )
    genera_cooccuring_fams[genus] = genus_cooccurring_fams_dict
genera_cooccuring_fams
Identifying genus specific co-occurring fams:   0%|          | 0/5 [00:00<?, ?it/s]
Identifying pairs of co-occurring families:   0%|                                                           | 0/117 [00:00<?, ?it/s]
Identifying pairs of co-occurring families:  11%|█████▍                                           | 13/117 [00:00<00:00, 126.59it/s]
Identifying pairs of co-occurring families:  22%|██████████▉                                      | 26/117 [00:00<00:00, 111.33it/s]
Identifying pairs of co-occurring families:  39%|███████████████████▎                             | 46/117 [00:00<00:00, 145.54it/s]
Identifying pairs of co-occurring families:  52%|█████████████████████████▌                       | 61/117 [00:00<00:00, 138.33it/s]
Identifying pairs of co-occurring families:  65%|███████████████████████████████▊                 | 76/117 [00:00<00:00, 139.37it/s]
Identifying pairs of co-occurring families:  78%|██████████████████████████████████████           | 91/117 [00:00<00:00, 129.62it/s]
Identifying pairs of co-occurring families: 100%|████████████████████████████████████████████████| 117/117 [00:00<00:00, 131.17it/s]

Combining pairs of co-occurring families: 100%|███████████████████████████████████████████████| 135/135 [00:00<00:00, 322638.77it/s]

Identifying pairs of co-occurring families:   0%|                                                           | 0/117 [00:00<?, ?it/s]
Identifying pairs of co-occurring families:  21%|██████████                                       | 24/117 [00:00<00:00, 239.91it/s]
Identifying pairs of co-occurring families:  41%|████████████████████                             | 48/117 [00:00<00:00, 205.63it/s]
Identifying pairs of co-occurring families:  69%|█████████████████████████████████▉               | 81/117 [00:00<00:00, 253.84it/s]
Identifying pairs of co-occurring families: 100%|████████████████████████████████████████████████| 117/117 [00:00<00:00, 242.16it/s]

Combining pairs of co-occurring families: 100%|███████████████████████████████████████████████| 361/361 [00:00<00:00, 558106.80it/s]

Identifying pairs of co-occurring families: 100%|███████████████████████████████████████████████| 117/117 [00:00<00:00, 1857.02it/s]

Combining pairs of co-occurring families: 100%|█████████████████████████████████████████████| 1130/1130 [00:00<00:00, 412135.96it/s]

Identifying pairs of co-occurring families: 100%|███████████████████████████████████████████████| 117/117 [00:00<00:00, 1456.48it/s]

Combining pairs of co-occurring families: 100%|███████████████████████████████████████████████| 255/255 [00:00<00:00, 694962.65it/s]

Identifying pairs of co-occurring families:   0%|                                                           | 0/117 [00:00<?, ?it/s]
Identifying pairs of co-occurring families: 100%|████████████████████████████████████████████████| 117/117 [00:00<00:00, 716.76it/s]

Combining pairs of co-occurring families: 100%|███████████████████████████████████████████████| 500/500 [00:00<00:00, 835851.73it/s]
Out[124]:
{'Pectobacterium': {0: {'fams': {'CBM3', 'GH5'}, 'freqs': {425}},
  1: {'fams': {'CBM48', 'CE8', 'CE9', 'GH13'}, 'freqs': {425}},
  2: {'fams': {'CBM5',
    'CBM50',
    'GH1',
    'GH103',
    'GH23',
    'GH28',
    'GH3',
    'GH43',
    'GT2',
    'GT51',
    'GT9',
    'PL1',
    'PL2',
    'PL22',
    'PL3',
    'PL9'},
   'freqs': {426}},
  3: {'fams': {'CE11', 'GH102', 'GH32'}, 'freqs': {425}},
  4: {'fams': {'GH105', 'GT56'}, 'freqs': {425}},
  5: {'fams': {'GH121', 'GH146', 'GH154'}, 'freqs': {1}},
  6: {'fams': {'GH94', 'GT84'}, 'freqs': {152}}},
 'Dickeya': {0: {'fams': {'CBM4', 'GH148'}, 'freqs': {8}},
  1: {'fams': {'CBM48',
    'CBM5',
    'CBM50',
    'CE4',
    'CE8',
    'GH1',
    'GH103',
    'GH105',
    'GH13',
    'GH23',
    'GH28',
    'GH3',
    'GH33',
    'GH73',
    'GH77',
    'GH8',
    'GT1',
    'GT19',
    'GT2',
    'GT28',
    'GT35',
    'GT4',
    'GT5',
    'GT51',
    'GT9',
    'PL1',
    'PL9'},
   'freqs': {206}},
  2: {'fams': {'CE11', 'GT83'}, 'freqs': {204}},
  3: {'fams': {'GH16', 'GT25'}, 'freqs': {1}},
  4: {'fams': {'GH19', 'GH5', 'PL4'}, 'freqs': {203}},
  5: {'fams': {'GH88', 'PL35'}, 'freqs': {3}},
  6: {'fams': {'GH94', 'GT84'}, 'freqs': {89}},
  7: {'fams': {'GT30', 'PL3'}, 'freqs': {205}},
  8: {'fams': {'PL2', 'PL22'}, 'freqs': {205}}},
 'Musicola': {0: {'fams': {'CBM32', 'CBM63'}, 'freqs': {2}},
  1: {'fams': {'CBM48',
    'CBM5',
    'CBM50',
    'CE1',
    'CE11',
    'CE12',
    'CE4',
    'CE8',
    'CE9',
    'GH1',
    'GH102',
    'GH103',
    'GH104',
    'GH105',
    'GH13',
    'GH19',
    'GH2',
    'GH23',
    'GH28',
    'GH3',
    'GH30',
    'GH31',
    'GH32',
    'GH33',
    'GH38',
    'GH5',
    'GH73',
    'GH77',
    'GH8',
    'GT0',
    'GT1',
    'GT19',
    'GT2',
    'GT26',
    'GT28',
    'GT30',
    'GT35',
    'GT4',
    'GT5',
    'GT51',
    'GT56',
    'GT81',
    'GT83',
    'GT9',
    'PL1',
    'PL2',
    'PL22',
    'PL9'},
   'freqs': {4}},
  2: {'fams': {'GH24', 'GH36'}, 'freqs': {2}}},
 'Lonsdalea': {0: {'fams': {'CBM32',
    'CBM5',
    'CBM50',
    'CE11',
    'CE4',
    'GH19',
    'GH23',
    'GH3',
    'GH32',
    'GH37',
    'GH68',
    'GH77',
    'GH8',
    'GT19',
    'GT2',
    'GT20',
    'GT26',
    'GT28',
    'GT4',
    'GT51',
    'GT56',
    'GT9'},
   'freqs': {39}},
  1: {'fams': {'GH1', 'GH28', 'GH4', 'GH73', 'GT0'}, 'freqs': {38}},
  2: {'fams': {'GH13', 'GH39', 'GT30', 'PL1', 'PL3'}, 'freqs': {38}},
  3: {'fams': {'GH26', 'GH51'}, 'freqs': {9}},
  4: {'fams': {'GH31', 'GT81'}, 'freqs': {38}},
  5: {'fams': {'GH78', 'GT1'}, 'freqs': {10}},
  6: {'fams': {'GH94', 'GT84'}, 'freqs': {33}}},
 'Brenneria': {0: {'fams': {'CBM3', 'GH5'}, 'freqs': {25}},
  1: {'fams': {'CBM5',
    'CBM50',
    'CE11',
    'CE12',
    'CE9',
    'GH1',
    'GH102',
    'GH103',
    'GH13',
    'GH23',
    'GH28',
    'GH3',
    'GH32',
    'GH4',
    'GH68',
    'GH73',
    'GH94',
    'GT0',
    'GT19',
    'GT2',
    'GT26',
    'GT28',
    'GT30',
    'GT35',
    'GT4',
    'GT5',
    'GT51',
    'GT56',
    'GT8',
    'GT81',
    'GT84',
    'GT9'},
   'freqs': {33}},
  2: {'fams': {'GH106', 'PL38'}, 'freqs': {1}},
  3: {'fams': {'GH8', 'GT83'}, 'freqs': {15}},
  4: {'fams': {'GT73', 'PL17'}, 'freqs': {1}}}}

Phenotype specific groups of always co-occurring CAZy families¶

Identify families that always co-occurring in soft and hard plant tissue genera.

In [125]:
soft_genera = ['Pectobacterium', 'Dickeya', 'Musicola']
hard_genera = ['Brenneria', 'Lonsdalea', 'Samsonia', 'Affinibrenneria', 'Acerihabitans']
# hard_genera = ['Brenneria', 'Lonsdalea']
grps = [[soft_genera, 'Soft tissue targeting'], [hard_genera, 'Hard tissue targeting']]

for grp in tqdm(grps):
    # gather all rows containing the genera of interest
    grp_fam_freq_df = fam_freq_filtered_df[fam_freq_filtered_df['Genus'].isin(grp[0])]
    
    grp_cooccurring_fams_dict = calc_cooccuring_fam_freqs(
        grp_fam_freq_df,
        list(all_families),
        exclude_core_cazome=False,
    )
    genera_cooccuring_fams[grp[1]] = grp_cooccurring_fams_dict
  0%|          | 0/2 [00:00<?, ?it/s]
Identifying pairs of co-occurring families:   0%|                                                           | 0/117 [00:00<?, ?it/s]
Identifying pairs of co-occurring families:   4%|██▏                                                | 5/117 [00:00<00:02, 40.72it/s]
Identifying pairs of co-occurring families:  10%|█████▏                                            | 12/117 [00:00<00:02, 52.20it/s]
Identifying pairs of co-occurring families:  16%|████████                                          | 19/117 [00:00<00:01, 56.27it/s]
Identifying pairs of co-occurring families:  25%|████████████▍                                     | 29/117 [00:00<00:01, 70.28it/s]
Identifying pairs of co-occurring families:  36%|█████████████████▉                                | 42/117 [00:00<00:00, 88.73it/s]
Identifying pairs of co-occurring families:  44%|██████████████████████▏                           | 52/117 [00:00<00:00, 89.34it/s]
Identifying pairs of co-occurring families:  53%|██████████████████████████▍                       | 62/117 [00:00<00:00, 88.79it/s]
Identifying pairs of co-occurring families:  62%|███████████████████████████████▏                  | 73/117 [00:00<00:00, 94.14it/s]
Identifying pairs of co-occurring families:  71%|███████████████████████████████████▍              | 83/117 [00:00<00:00, 94.53it/s]
Identifying pairs of co-occurring families:  80%|████████████████████████████████████████▏         | 94/117 [00:01<00:00, 97.29it/s]
Identifying pairs of co-occurring families:  89%|███████████████████████████████████████████▌     | 104/117 [00:01<00:00, 97.81it/s]
Identifying pairs of co-occurring families: 100%|█████████████████████████████████████████████████| 117/117 [00:01<00:00, 86.75it/s]

Combining pairs of co-occurring families: 100%|█████████████████████████████████████████████████| 75/75 [00:00<00:00, 125178.19it/s]

Identifying pairs of co-occurring families:   0%|                                                           | 0/117 [00:00<?, ?it/s]
Identifying pairs of co-occurring families: 100%|████████████████████████████████████████████████| 117/117 [00:00<00:00, 604.14it/s]

Combining pairs of co-occurring families: 100%|█████████████████████████████████████████████████| 91/91 [00:00<00:00, 415775.23it/s]

Build an upset plot of co-occurring CAZy families¶

One of the best ways to visualise the groups of always co-occurring CAZy families is to generate an upset plot.

Build an upsetplot (using the Python package upsetplot) to visulise the groups of always co-occurring CAZy families, additionally it will plot the number of genomes in which each group of co-occurring CAZy families were present.

First compile the data/membership for the upset plot by:

  1. Creating an empty list to store the upset plot data
  2. Adding to the empty list the data contained in each dictionary of co-occurring CAZy families by using the add_to_upsetplot_membership() function
In [126]:
upsetplot_membership = []
upsetplot_membership = add_to_upsetplot_membership(upsetplot_membership, cooccurring_fams_dict)

for genus in genera_cooccuring_fams:
    upsetplot_membership = add_to_upsetplot_membership(
        upsetplot_membership,
        genera_cooccuring_fams[genus],
    )

len(upsetplot_membership)
Out[126]:
7233

Build the upset plot¶

Building the upset plot will include the core CAZomes across Pectobacteriaceae, per genus, and per all soft plant tissue targeting genera and all hard plant tissue targeting genera.

In [127]:
pectobact_upsetplot = build_upsetplot(
    upsetplot_membership,
    file_path='../results/cooccurring_families/pecto-cooccurring-families.svg',
)

Break down the incidences per genus¶

The upset plot generates a bar chart showing the number of genomes that each group of co-occuring CAZy families appeared in. However, this plots the total number across each of the groups (i.e. Pectobacterium, Dickeya, etc.).

To break down the indidence (i.e. the number of genomes that each group of co-occurring CAZy families were present in) per group, a dataframe listing each group of co-occurring CAZy families, the group (i.e. genus), and the respective frequency must be generated. This dataframe can then be used to generate a proportional area plot (or matrix plot), breaking down the incidence per group (i.e. genus).

The groups of co-occurring CAZy families must be listed in the same order as they are presented in the upset plot.

In [128]:
upset_plot_groups = get_upsetplot_grps(upsetplot_membership)
100%|███████████████████████████████████████████████████████████████████████████████████████████████| 38/38 [00:01<00:00, 29.69it/s]

Compiling the data of the incidence of each grp of co-occurring CAZy families per group of interest (e.g. per genus), into a single dataframe.

Create an empty list to store all data for the dataframe, then use add_upsetplot_grp_freqs to add data of the incidence per group of co-occurring CAZy families to the list. build_upsetplot_matrix is then used to build the dataframe.

In [129]:
cooccurring_grp_freq_data = []  # empty list to store data for the df

# add pectobacteriaceae data
genera_cooccuring_fams['Pectobacteriaceae'] = cooccurring_fams_dict

# add data for each genus, all soft plant targeting and hard plant tissue targeting
cooccurring_grp_freq_data = add_upsetplot_grp_freqs(
    upset_plot_groups,
    cooccurring_grp_freq_data,
    genera_cooccuring_fams,
    genus,
    grp_sep=True,
    grp_order=[
        'Pectobacteriaceae', 
        'Pectobacterium', 'Dickeya', 'Musicola', 'Soft tissue targeting',
        'Brenneria', 'Lonsdalea', 'Hard tissue targeting',
    ],
    include_none=True,
)
Compiling co-occurring families incidence data: 100%|████████████████████████████████████████████| 38/38 [00:00<00:00, 24853.20it/s]

Build a single dataframe of co-occurring families, freq and group (e.g. genus).

But also list the information for each group in the same order the groups of CAZy families are listed in the upset plot. This allows a proportional area plot to be generated (for example, by using RawGraphs), which can then be combined with the upset plot (for example, using inkscape).

In [130]:
# build the dataframe
cooccurring_fams_freq_df = build_upsetplot_matrix(
    cooccurring_grp_freq_data,
    'Genus',
    file_path='../results/cooccurring_families/cooccurring_fams_freqs.csv',
)
cooccurring_fams_freq_df
Out[130]:
Families Genus Incidence
0 PL2+PL22 Pectobacteriaceae NaN
1 PL2+PL22 Pectobacterium NaN
2 PL2+PL22 Dickeya 205.0
3 PL2+PL22 Musicola NaN
4 PL2+PL22 Soft tissue targeting 635.0
... ... ... ...
299 GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+GH1+GH13+GH28... Musicola 4.0
300 GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+GH1+GH13+GH28... Soft tissue targeting NaN
301 GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+GH1+GH13+GH28... Brenneria NaN
302 GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+GH1+GH13+GH28... Lonsdalea NaN
303 GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+GH1+GH13+GH28... Hard tissue targeting NaN

304 rows × 3 columns

Generate figure for paper¶

After analysing the data, mannually group of the soft and hard tissue targeting specific groups of CAZy families together and mannually define the order the groups are presented in the final upset plot (by setting the param sort_by to 'input').

In [131]:
grp_order = {
    'soft_grps': [  # grps only found in soft plant tissue targeting genomes
        'GH13+CBM48+CE8', # S
        'PL2+PL22', # # S D
        'GH148+CBM4', # S D
        'PL3+GT30', # D
        'PL35+GH88', # D
        'CE11+GT83', # D
        'GT25+GH16', # D
        'GH5+GH19+PL4', # D
        'GH121+GH146+GH154', # S P   
        'GH121+GH146',
        'GH105+GT56', # P
        'GH13+CBM48+CE8+CE9',  # P
        'CE11+GH32+GH102', # P
        
    ],
    'musicola': [  # grps found only in musicola
        'CBM32+CBM63',
        'GH24+GH36',
    ],
    'both_grps': [  # grps found in soft and hard plant tissue targeting genomes
        'GT84+GH94', # 
        'GH5+CBM3', #
    ],
    'hard_musicola_grps': [  # grps only found in hard plant tissue targeting genomes and Musicola
        'GH13+GT30',
        'GH1+GH73+GT0',
        'GT5+GT35+GT8',
        'GH15+GH127',
        'GT81+GH31', # L
        'GH8+GT83', # B
    ],
    'hard_grps': [ # grps only found in hard plant tissue targeting genomes
        'CBM67+GH65', # H
        'PL17+GT73', # L B
        'PL38+GH106', # L B
        'GT1+GH78', # L
        'GH26+GH51', # L
        'GH1+GH28+GH73+GT0+GH4',
        'GH13+PL1+PL3+GT30+GH39',
    ],
    'all_core_cazomes': [ # then core cazomes at the end
        'GH23+GH3+CBM5+CBM50+GT2+GT51+GT9',  # pectobacteriaceae
        'GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+GH1+GH28+PL1+GH103+PL9',  # soft plant tissue targeting
        'GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+GH1+GH13+GH28+PL1+GH103+PL9+CBM48+CE8+GH105+GT4+GT28+GT19+GH73+GT5+GT35+GH8+CE4+GH77+GT1+GH33',   # dickeya
        'GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+GH1+GH28+PL1+GH103+PL9+PL2+PL22+PL3+GH43', # pectobacter 
        'GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+GH1+GH13+GH28+PL1+GH103+PL9+PL2+PL22+CBM48+CE8+CE11+GH5+GH105+GT56+GH32+GH102+CE9+GT4+GT28+GT19+GH73+GT30+GT5+GT35+GH8+CE4+GH77+GH19+GT83+GT1+GH33+GT26+GT0+GT81+GH31+CE12+GH38+GH30+CE1+GH2+GH104',  # musicola
        'GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+CE11+GT56+GT4+GT28+GT19+GT26',  # hard
        'GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+CE11+GT56+GH32+GT4+GT28+GT19+GH8+CE4+GH77+GH19+GT26+GH68+CBM32+GT20+GH37',   # lonsdalea
        'GH23+GH3+CBM5+CBM50+GT2+GT51+GT9+GH1+GH13+GH28+GH103+GT84+GH94+CE11+GT56+GH32+GH102+CE9+GT4+GT28+GT19+GH73+GT30+GT5+GT35+GT26+GT0+GT81+GH68+GH4+GT8+CE12', # bren
    ],
}
for grp in grp_order:
    grps = []
    for fams_str in grp_order[grp]:
        fams_list = fams_str.split("+")
        fams_list.sort()
        fams = "+".join(fams_list)
        grps.append(fams)
    grp_order[grp] = grps
In [132]:
paper_cooccurring_fams = {}  # {grp_num: {'fams': {fams}, 'freqs': {int}}}
num_of_grp = 0

for pheno_grp in grp_order:
    for fam_grp in grp_order[pheno_grp]:
        fams = fam_grp.split("+")
        fams.sort()
        
        for genus in ['Pectobacterium', 'Dickeya', 'Musicola', 'Soft tissue targeting', 'Hard tissue targeting', 'Brenneria', 'Lonsdalea']:
            # {grp num: {'fams': {fams}, 'freqs': {int}}}
            
            for grp_num in genera_cooccuring_fams[genus]:
                grp_fams = list(genera_cooccuring_fams[genus][grp_num]['fams'])
                grp_fams.sort()
                
                if grp_fams == fams:
                    
                    this_grp_num = None
                    
                    for co_grp_num in paper_cooccurring_fams:
                        if paper_cooccurring_fams[co_grp_num]['fams'] == genera_cooccuring_fams[genus][grp_num]['fams']:
                            this_grp_num = co_grp_num
                            
                    if this_grp_num is None:
                        this_grp_num = copy(num_of_grp)
                    
                        paper_cooccurring_fams[this_grp_num] = {
                            'fams': genera_cooccuring_fams[genus][grp_num]['fams'],
                            'freqs': genera_cooccuring_fams[genus][grp_num]['freqs']
                        }
                        
                        num_of_grp += 1
In [133]:
upsetplot_membership = []
upsetplot_membership = add_to_upsetplot_membership(upsetplot_membership, paper_cooccurring_fams)
len(upsetplot_membership)
Out[133]:
5076
In [134]:
pectobact_upsetplot = build_upsetplot(
    upsetplot_membership,
    file_path='../results/cooccurring_families/paper-pecto-cooccurring-families.svg',
    sort_by='input',
)

Calculate the frequency of each group per genus to then build a matrix plot (or proportional area plot).

In [135]:
paper_cooccurring_freqs = []  # [fams, genus/grp, incidence/freq]
num_of_grp = 0

for grp_name in grp_order:
    for fams in grp_order[grp_name]:
        fams = fams.split("+")
        fams.sort()

        for genus in ['Soft tissue targeting', 'Pectobacterium', 'Dickeya', 'Musicola', 'Hard tissue targeting', 'Brenneria', 'Lonsdalea']:
            # {grp num: {'fams': {fams}, 'freqs': {int}}}

            for grp_num in genera_cooccuring_fams[genus]:
                grp_fams = list(genera_cooccuring_fams[genus][grp_num]['fams'])
                grp_fams.sort()

                if grp_fams == fams:
                    # found fams in genus

                    paper_cooccurring_freqs.append(
                        [
                            genera_cooccuring_fams[genus][grp_num]['fams'],
                            genus,
                            list(genera_cooccuring_fams[genus][grp_num]['freqs'])[0],
                        ]
                    )
In [136]:
# build the dataframe
cooccurring_fams_freq_df = build_upsetplot_matrix(
    paper_cooccurring_freqs,
    'Genus',
    file_path='../results/cooccurring_families/paper-cooccurring_fams_freqs.csv',
)
cooccurring_fams_freq_df
Out[136]:
Families Genus Incidence
0 {CBM48, CE8, GH13} Soft tissue targeting 635
1 {PL22, PL2} Soft tissue targeting 635
2 {PL22, PL2} Dickeya 205
3 {GH148, CBM4} Soft tissue targeting 8
4 {GH148, CBM4} Dickeya 8
5 {GT30, PL3} Dickeya 205
6 {GH88, PL35} Dickeya 3
7 {GT83, CE11} Dickeya 204
8 {GH16, GT25} Dickeya 1
9 {GH5, GH19, PL4} Dickeya 203
10 {GH154, GH121, GH146} Soft tissue targeting 1
11 {GH154, GH121, GH146} Pectobacterium 1
12 {GT56, GH105} Pectobacterium 425
13 {CBM48, CE8, CE9, GH13} Pectobacterium 425
14 {GH32, GH102, CE11} Pectobacterium 425
15 {CBM63, CBM32} Musicola 2
16 {GH36, GH24} Musicola 2
17 {GH94, GT84} Soft tissue targeting 241
18 {GH94, GT84} Pectobacterium 152
19 {GH94, GT84} Dickeya 89
20 {GH94, GT84} Hard tissue targeting 68
21 {GH94, GT84} Lonsdalea 33
22 {CBM3, GH5} Pectobacterium 425
23 {CBM3, GH5} Hard tissue targeting 25
24 {CBM3, GH5} Brenneria 25
25 {GT30, GH13} Hard tissue targeting 74
26 {GH73, GT0, GH1} Hard tissue targeting 74
27 {GT35, GT8, GT5} Hard tissue targeting 36
28 {GH127, GH15} Hard tissue targeting 1
29 {GH31, GT81} Lonsdalea 38
30 {GT83, GH8} Brenneria 15
31 {CBM67, GH65} Hard tissue targeting 1
32 {PL17, GT73} Hard tissue targeting 1
33 {PL17, GT73} Brenneria 1
34 {PL38, GH106} Hard tissue targeting 1
35 {PL38, GH106} Brenneria 1
36 {GH78, GT1} Lonsdalea 10
37 {GH26, GH51} Lonsdalea 9
38 {GH73, GH4, GH28, GH1, GT0} Lonsdalea 38
39 {PL1, GH39, GT30, GH13, PL3} Lonsdalea 38
40 {GT2, GH23, GT9, GT51, GH28, GH103, PL1, GH3, ... Soft tissue targeting 636
41 {GT35, GH23, GH103, GT1, GT2, GT9, CE4, GT5, G... Dickeya 206
42 {GH43, GT2, GH23, GT9, GT51, GH28, GH103, PL1,... Pectobacterium 426
43 {GT35, GH23, GH103, GT1, GH102, GH5, GT0, GT2,... Musicola 4
44 {GT19, GH23, GT2, GT26, GT51, GT9, GH3, GT56, ... Hard tissue targeting 75
45 {GH23, CBM32, GT2, GT26, GT9, CE4, GH77, GT28,... Lonsdalea 39
46 {GT35, GH23, GH103, GT84, GH102, GT0, GT2, GT2... Brenneria 33

6. Principal Component Analysis (PCA)¶

Use principal component analysis to identify individual and groups of CAZy families that are strongly associated with divergence between the Pectobacteriaceae genera CAZomes in terms of CAZy family frequencies.

What is PCA?:

Principal component analysis (PCA) is a statistical method that transforms a high dimensional data set into a low dimensional data set, while retaining as much information as possible. This dimensional reduction is achieved through the generation of principal components (PCs). Each PC is a direction along which variation in the data set is maximal. The first PC (PC1) captures the greatest diversity in the data set, the second PC (PC2) the second greatest direversity, and so on. Each PC represents a group of variables in the original data set, with each variable contributing a different weighting to the PC. A single variable can be associated with more than one PC. The relationships between variables and PCs can be visualised by plotting the loadings (or weightings) for each varaible along each PC.

PCA¶

Use the cazomevolve function perform_pca() to perform a PCA on a dataframe where each row is a genome, and each column the frequency of a unique CAZy family - the columns in the dataframe must only contain numerical data (i.e. no taxonomic data).

In [137]:
# make output dir for results, will not delete data if dir already exists
make_output_directory(Path('../results/pca/'), force=True, nodelete=True)
Output directory ../results/pca exists, nodelete is True. Adding output to output directory.
In [138]:
num_of_components = len(fam_freq_filtered_df_ggs.columns)
pectobact_pca, X_scaled = perform_pca(fam_freq_filtered_df_ggs, num_of_components)
pectobact_pca
Out[138]:
PCA(n_components=117)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
PCA(n_components=117)

Explained cumulative variance¶

Explore the amount of variance in the dataset that is captured by the dimensional reduction performed by the PCA.

In [139]:
print(
    f"{round(pectobact_pca.explained_variance_ratio_.sum() * 100, 2)}% "
    "of the variance in the data set was catpured by the PCA"
)

cumExpVar = plot_explained_variance(
    pectobact_pca,
    num_of_components,
    file_path="../results/pca/pca_explained_variance.png",
)
100.0% of the variance in the data set was catpured by the PCA
Number of features needed to explain 0.95 fraction of total variance is 59. 

Variance captured per PC¶

Explore the variance in the data that is captured by each PC.

In [140]:
plot_scree(pectobact_pca, nComp=10, file_path="../results/pca/pectobact_pca_scree.png")
Explained variance for 1PC: 0.1578167077631129
Explained variance for 2PC: 0.11714531745192669
Explained variance for 3PC: 0.05535353923303329
Explained variance for 4PC: 0.04804711615760438
Explained variance for 5PC: 0.04031600741870654
Explained variance for 6PC: 0.02931399017337997
Explained variance for 7PC: 0.02766383466136205
Explained variance for 8PC: 0.021653599705441385
Explained variance for 9PC: 0.02118856319918563
Explained variance for 10PC: 0.019638464318788077

PC1 (15%) and PC2 (11%) capture a signficantly greater degree of the varaince in the data set than all other PCs.
PC3 (6%) and PC4 (5%) capture comparable degrees of the variance

Scatter and loadings plots¶

To explore the variance captured by each PC, plot different combinations of PCs onto a scatter plot where each axis represents a different PC and each point on the plot is a genome in the data set, using the plot_pca() function.

plot_pca() takes 6 positional argumets:

  1. PCA object from peform_pca()
  2. Scaling object (X_scaled) from perform_pca()
  3. The dataframe of CAZy family frequencies, if you want to colour code the genomes by a specific grouping (i.e. by Genus), an additional column containing the grouping information needs to be added to the dataframe (e.g. listing the genus per genome)
  4. The number of the first PC to be plotted, e.g. 1 for PC1 - int
  5. The number of the second PC to be plotted, e.g. 2 for PC2 - int
  6. The method to colour code the genomes by (e.g. 'Genus') - needs to match the name of the column containing the data in the dataframe of CAZy family frequencies

Owing to the majoirty of the variance captured by the PCA being captured by PCs 1-4, all possible combinations of these PCs were explored.

PCs 1 - 4¶

The PCs 1-4 capture more diversity in the data set than the other PCs, therefore, plot all combinations of these PCs against each other, projecting the genomes onto these PCs.

A pairplot is generated using Seaborn, plotting each potential pairs between PCs 1-4. A KDE plot (a special type of density or histogram plot) is generated on the diagonal.

First colour code and style each point (where each point represents a genome) by its genus classification.

In [141]:
fam_freq_filtered_df_ggs['Genus'] = list(fam_freq_filtered_df['Genus'])
fam_freq_filtered_df_ggs['Species'] = list(fam_freq_filtered_df['Species'])

X_pca = pectobact_pca.transform(X_scaled)

fam_freq_df_ggs_pc = copy(fam_freq_filtered_df_ggs)
colnames = []
for i in range(4):
    fam_freq_df_ggs_pc[f'PC{i+1} ({round(pectobact_pca.explained_variance_ratio_[i] * 100, 2)}%)'] = X_pca[:,i]
    colnames.append(f'PC{i+1} ({round(pectobact_pca.explained_variance_ratio_[i] * 100, 2)}%)')

g = sns.pairplot(
    fam_freq_df_ggs_pc,
    vars=colnames,
    hue="Genus",
    diag_kind="kde",
    markers=['o','X', '^', 'P', 'v', 'D', '<', 's'],
    height=3,
);

i = 0
for ax in g.axes.ravel():
    if ax is None:
        continue
    if i not in [0,5,10,15]:
        ax.axhline(0, linestyle='--', color='grey', linewidth=1.25);
        ax.axvline(0, linestyle='--', color='grey', linewidth=1.25);
    else:
        ax.axvline(0, linestyle='--', color='grey', linewidth=1.25);
    i += 1
    
plt.savefig(
    '../results/pca/pca_pc_screen_genus.svg',
    bbox_inches='tight',
    format='svg'
)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tight
  self._figure.tight_layout(*args, **kwargs)

Colour code each point by its species classification.

In [142]:
g = sns.pairplot(
    fam_freq_df_ggs_pc,
    vars=colnames,
    hue="Species",
    diag_kind="kde",
    height=3,
);

i = 0
for ax in g.axes.ravel():
    if ax is None:
        continue
    if i not in [0,5,10,15]:
        ax.axhline(0, linestyle='--', color='grey', linewidth=1.25);
        ax.axvline(0, linestyle='--', color='grey', linewidth=1.25);
    else:
        ax.axvline(0, linestyle='--', color='grey', linewidth=1.25);
    i += 1
    
sns.move_legend(g, "lower center", bbox_to_anchor=(.5, 1), ncol=6, title='Species', frameon=False);
    
plt.savefig(
    '../results/pca/pca_pc_screen_species.svg',
    bbox_inches='tight',
    format='svg'
)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tight
  self._figure.tight_layout(*args, **kwargs)

There are so many species that it is difficult to tell the colours apart. Therefore, pick out some stories of interest, colour code these genomes and leave the rest grey.

In [143]:
# pick out some stories and colour code the species plot accordingly
# pick out some stories and colour code the species plot accordingly
species_of_interest = [
    'aquatica',
    'dianthicola',
    'oryzae',
    'zeae',
    'britannica',
    'populi',
    'aquaticum',
    'carotovorum',
    'parmentieri',
    'quasiaquaticum',
]

# Already have geus and species columns added to fam_freq_filtered_df_ggs
markers_dict = {
    'Acerihabitans': 's',
    'Affinibrenneria': '>',
    'Brenneria': '^',
    'Dickeya': 'X',
    'Lonsdalea': 'P',
    'Musicola': 'v',
    'Pectobacterium': 'o',
    'Samsonia': 'D',
}

# build lists for species and hue colouring and markers
new_sp_col = []

for i in range(len(fam_freq_filtered_df_ggs['Species'])):
    sp = fam_freq_filtered_df_ggs.iloc[i]['Species'].split(" ")[0]
    if sp in species_of_interest:
        new_sp_col.append(f"{fam_freq_filtered_df_ggs.iloc[i]['Genus']} {sp}")
    else:
        new_sp_col.append(f'{fam_freq_filtered_df_ggs.iloc[i]["Genus"]} sp.')

fam_freq_df_ggs_pc['Selected_Species'] = new_sp_col

colours = [
    "#808080", "#D3D3D3", "#4ce0e6", "#e391be",
    "#13add4",
    "#550fa6",
    "#E5E4E2",
    "#c99c14",
    "#708090",
    "#f5d018",  # dark green PC 1a4a07
    "#0c1669",
    "#1a4a07",
    "#d41320",
    "#899499",
    "#71797E",
    "#636263",
    "#262626",
    "#000000"
]
# Set custom color palette
sns.set_palette(sns.color_palette(colours))

g = sns.pairplot(
    fam_freq_df_ggs_pc,
    vars=colnames,
    hue="Selected_Species",
    diag_kind="kde",
    height=3,
    markers = [
        'X', 'o', '^',
        'X', 'X', 'o',
        'X', 'o', 'o',
        'v', 'X', 'D',
        'P', 'P', 'P',
        'o', 's', '>',
    ],
);

i = 0
for ax in g.axes.ravel():
    if ax is None:
        continue
    if i not in [0,5,10,15]:
        ax.axhline(0, linestyle='--', color='grey', linewidth=1.25);
        ax.axvline(0, linestyle='--', color='grey', linewidth=1.25);
    else:
        ax.axvline(0, linestyle='--', color='grey', linewidth=1.25);
    i += 1
    
plt.savefig(
    '../results/pca/pca_pc_screen_species_selected.svg',
    bbox_inches='tight',
    format='svg'
)
/home/em/anaconda3/envs/cazomevolve/lib/python3.11/site-packages/seaborn/axisgrid.py:118: UserWarning: The figure layout has changed to tight
  self._figure.tight_layout(*args, **kwargs)

PC1 separates out the genomes in a manner that correlates with their genus classification: Pectobacterium genomes are locataed in the negative PC1 axis, and Dickeya genomes are located in the positive PC1 axis.

PCs 2-4 do not correlate with the genus classification. In plots (from PC1-PC4) show the genome clustering correlating with species classification.

Individual plots¶

Having made a pairwise plot. Generate a scatter and loadings plot for each pair of PCs from PC1-PC4. This will make it easier to look at the details in each plot, and will make it easier to tell species apart.

Additional pauses are placed into the code to allow time for the notebook to render to figure before generating the next. This does not impact the figures that are saved to disk, but if the pauses (time.sleep()) are excluded, data from one figure may appear in another.

PC1 vs PC2¶

In [144]:
pc_pair = (1,2)
output_dir = Path(f'../results/pca/PC{pc_pair[0]}-vs-PC{pc_pair[1]}')
make_output_directory(output_dir, force=True, nodelete=True)

for job in ['genus', 'species', 'loadings']:
    if job == 'genus':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Genera")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-genus.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Genus',
            style='Genus',
            file_path=out,
        );
        time.sleep(2)

    elif job == 'species':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Species")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-species.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Species',
            style='Species',
            file_path=out,
        );
        time.sleep(2)

    elif job == 'loadings':  # loadings plot
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - Loadings plot")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-loadings_plot.png'
        g = plot_loadings(
            pectobact_pca,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            threshold=0.3,
            fig_size=(10,10),
            file_path=out,
            font_size=11,
        );
Output directory ../results/pca/PC1-vs-PC2 exists, nodelete is True. Adding output to output directory.
PC1 vs PC2 - plotting Genera
Not applying hue order
Applying style
Not applying style order
PC1 vs PC2 - plotting Species
Not applying hue order
Applying style
Not applying style order
PC1 vs PC2 - Loadings plot

Regenerate the scatter plot of PC1 vs PC2, labelling the Dickeya genomes that are clustered with Musicola, and the Pectobacterium genomes that are on the PC1 +ve axis.

In [145]:
X_pca = pectobact_pca.transform(X_scaled)
plt.figure(figsize=(15,15))
sns.set(font_scale=1.15)
g = sns.scatterplot(
    x=X_pca[:,0],
    y=X_pca[:,1],
    data=fam_freq_filtered_df_ggs,
    hue='Genus',
    style='Genus',
    s=100,
    markers=True,
)

g.axhline(0, linestyle='--', color='grey', linewidth=1.25);
g.axvline(0, linestyle='--', color='grey', linewidth=1.25);

plt.ylabel(f"PC2 {100 * pectobact_pca.explained_variance_ratio_[1]:.2f}%");
plt.xlabel(f"PC1 {100 * pectobact_pca.explained_variance_ratio_[0]:.2f}%");
plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0);

genome_lbls = ["-".join(_) for _ in fam_freq_df_ggs.index]
x_vals = X_pca[:,0]
y_vals = X_pca[:,1]

texts = [
    plt.text(
        xval,
        yval,
        lbl,
        ha='center',
        va='center',
        fontsize=12,
    ) for (xval, yval, lbl) in zip(
        x_vals, y_vals, genome_lbls
    ) if ((xval > 2) and (yval < 3.5) and (yval > 0) and (xval < 4)) or ((xval > 0.1) and (xval < 2.5) and (yval < 0))
]
adjustText.adjust_text(texts, arrowprops=dict(arrowstyle='-', color='black'));

plt.savefig('../results/pca/pca_pc1_vs_pc2_musicola_annotated.png', bbox_inches='tight', format='png')

PC1 vs PC3¶

In [146]:
pc_pair = (1,3)
output_dir = Path(f'../results/pca/PC{pc_pair[0]}-vs-PC{pc_pair[1]}')
make_output_directory(output_dir, force=True, nodelete=True)

for job in ['genus', 'species', 'loadings']:
    if job == 'genus':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Genera")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-genus.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Genus',
            style='Genus',
            file_path=out,
            figsize=(10,8),
        );
        time.sleep(2)

    elif job == 'species':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Species")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-species.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Species',
            style='Species',
            file_path=out,
            figsize=(10,8),
        );
        time.sleep(2)

    elif job == 'loadings':  # loadings plot
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - Loadings plot")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-loadings_plot.png'
        g = plot_loadings(
            pectobact_pca,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            threshold=0.3,
            fig_size=(10,10),
            file_path=out,
            font_size=11,
        );
Output directory ../results/pca/PC1-vs-PC3 exists, nodelete is True. Adding output to output directory.
PC1 vs PC3 - plotting Genera
Not applying hue order
Applying style
Not applying style order
PC1 vs PC3 - plotting Species
Not applying hue order
Applying style
Not applying style order
PC1 vs PC3 - Loadings plot

PC1 vs PC4¶

In [147]:
pc_pair = (1,4)
output_dir = Path(f'../results/pca/PC{pc_pair[0]}-vs-PC{pc_pair[1]}')
make_output_directory(output_dir, force=True, nodelete=True)

for job in ['genus', 'species', 'loadings']:
    if job == 'genus':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Genera")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-genus.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Genus',
            style='Genus',
            file_path=out,
            figsize=(10,8),
        );
        time.sleep(2)

    elif job == 'species':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Species")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-species.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Species',
            style='Species',
            file_path=out,
            figsize=(10,8),
        );
        time.sleep(2)

    elif job == 'loadings':  # loadings plot
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - Loadings plot")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-loadings_plot.png'
        g = plot_loadings(
            pectobact_pca,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            threshold=0.3,
            fig_size=(10,10),
            file_path=out,
            font_size=11,
        );
Output directory ../results/pca/PC1-vs-PC4 exists, nodelete is True. Adding output to output directory.
PC1 vs PC4 - plotting Genera
Not applying hue order
Applying style
Not applying style order
PC1 vs PC4 - plotting Species
Not applying hue order
Applying style
Not applying style order
PC1 vs PC4 - Loadings plot

PC2 vs PC3¶

In [148]:
pc_pair = (2,3)
output_dir = Path(f'../results/pca/PC{pc_pair[0]}-vs-PC{pc_pair[1]}')
make_output_directory(output_dir, force=True, nodelete=True)

for job in ['genus', 'species', 'loadings']:
    if job == 'genus':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Genera")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-genus.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Genus',
            style='Genus',
            file_path=out,
            figsize=(8,10),
        );
        time.sleep(2)

    elif job == 'species':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Species")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-species.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Species',
            style='Species',
            file_path=out,
            figsize=(8,10),
        );
        time.sleep(2)

    elif job == 'loadings':  # loadings plot
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - Loadings plot")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-loadings_plot.png'
        g = plot_loadings(
            pectobact_pca,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            threshold=0.3,
            fig_size=(10,10),
            file_path=out,
            font_size=11,
        );
Output directory ../results/pca/PC2-vs-PC3 exists, nodelete is True. Adding output to output directory.
PC2 vs PC3 - plotting Genera
Not applying hue order
Applying style
Not applying style order
PC2 vs PC3 - plotting Species
Not applying hue order
Applying style
Not applying style order
PC2 vs PC3 - Loadings plot

PC2 vs PC4¶

In [149]:
pc_pair = (2,4)
output_dir = Path(f'../results/pca/PC{pc_pair[0]}-vs-PC{pc_pair[1]}')
make_output_directory(output_dir, force=True, nodelete=True)

for job in ['genus', 'species', 'loadings']:
    if job == 'genus':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Genera")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-genus.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Genus',
            style='Genus',
            file_path=out,
            figsize=(10,10),
        );
        time.sleep(2)

    elif job == 'species':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Species")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-species.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Species',
            style='Species',
            file_path=out,
            figsize=(10,10),
        );
        time.sleep(2)

    elif job == 'loadings':  # loadings plot
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - Loadings plot")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-loadings_plot.png'
        g = plot_loadings(
            pectobact_pca,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            threshold=0.3,
            fig_size=(10,10),
            file_path=out,
            font_size=11,
        );
Output directory ../results/pca/PC2-vs-PC4 exists, nodelete is True. Adding output to output directory.
PC2 vs PC4 - plotting Genera
Not applying hue order
Applying style
Not applying style order
PC2 vs PC4 - plotting Species
Not applying hue order
Applying style
Not applying style order
PC2 vs PC4 - Loadings plot

PC3 vs PC4¶

In [150]:
pc_pair = (3,4)
output_dir = Path(f'../results/pca/PC{pc_pair[0]}-vs-PC{pc_pair[1]}')
make_output_directory(output_dir, force=True, nodelete=True)

for job in ['genus', 'species', 'loadings']:
    if job == 'genus':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Genera")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-genus.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Genus',
            style='Genus',
            file_path=out,
        );
        time.sleep(2)

    elif job == 'species':
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - plotting Species")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-species.png'
        g = plot_pca(
            pectobact_pca,
            X_scaled,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            'Species',
            style='Species',
            file_path=out,
        );
        time.sleep(2)

    elif job == 'loadings':  # loadings plot
        print(f"PC{pc_pair[0]} vs PC{pc_pair[1]} - Loadings plot")
        out = output_dir/f'pca_pc{pc_pair[0]}_vs_pc{pc_pair[1]}-loadings_plot.png'
        g = plot_loadings(
            pectobact_pca,
            fam_freq_filtered_df_ggs,
            pc_pair[0],
            pc_pair[1],
            threshold=0.3,
            fig_size=(10,10),
            file_path=out,
            font_size=11,
        );
Output directory ../results/pca/PC3-vs-PC4 exists, nodelete is True. Adding output to output directory.
PC3 vs PC4 - plotting Genera
Not applying hue order
Applying style
Not applying style order
PC3 vs PC4 - plotting Species
Not applying hue order
Applying style
Not applying style order
PC3 vs PC4 - Loadings plot

Generate the scatter plot of PC3 vs PC4 again with only Pectobacterium genomes to identify the species that are diverging from the centre of the plot.

In [151]:
X_pca = pectobact_pca.transform(X_scaled)

plt.figure(figsize=(10,7.5))
sns.set(font_scale=1.15)

temp_d_fam_freq_df_ggs = fam_freq_filtered_df_ggs[fam_freq_filtered_df_ggs['Genus'] == 'Pectobacterium']

g = sns.scatterplot(
    x=X_pca[:,2][fam_freq_filtered_df_ggs['Genus'] == 'Pectobacterium'],
    y=X_pca[:,3][fam_freq_filtered_df_ggs['Genus'] == 'Pectobacterium'],
    data=temp_d_fam_freq_df_ggs,
    hue='Species',
    style='Species',
    s=100,
    markers=True,
)

g.axhline(0, linestyle='--', color='grey', linewidth=1.25);
g.axvline(0, linestyle='--', color='grey', linewidth=1.25);

plt.ylabel(f"PC4 {100 * pectobact_pca.explained_variance_ratio_[3]:.2f}%");
plt.xlabel(f"PC3 {100 * pectobact_pca.explained_variance_ratio_[2]:.2f}%");

plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0);
sns.move_legend(g, "lower center", bbox_to_anchor=(.5, 1), ncol=4, title='Species', frameon=False);

plt.savefig(
    '../results/pca/p_pc3_pc4_pectobacterium_sp.svg',
    bbox_inches='tight',
    format='svg',
)